
 Dynamic Object Viewers for Data Structures
James H. Cross II, T. Dean Hendrix, Jhilmil Jain, and Larry A. Barowski

Computer Science and Software Engineering
Auburn University, AL 36849

crossjh | hendrtd | jainjhi | barowla@auburn.edu

ABSTRACT
The jGRASP lightweight IDE has been extended to provide object
viewers that automatically generate dynamic, state-based
visualizations of data structures in Java. These viewers provide
multiple synchronized visualizations of data structures as the user
steps through the source code in either debug or workbench mode.
This tight integration in a lightweight IDE provides a unique and
promising environment for learning data structures. Initial
classroom use has demonstrated the object viewers’ potential as an
aid to students who are learning to write and modify classes
representing data structures. Recently completed controlled
experiments with CS2 students indicate that these viewers can have
a significant positive impact on student performance.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
graphical environments, integrated environments, interactive
environments, controlled experiments.

General Terms
Documentation, Experimentation, Human Factors.

Keywords
Program Visualization, Algorithm Animation, Data Structures.

1. INTRODUCTION
The jGRASP lightweight IDE (http://jgrasp.org) has been extended
to include new dynamic viewers specifically intended to generate
traditional abstract views of data structures such as linked lists and
binary trees. These viewers are the most recent addition to the
software visualizations provided by jGRASP. The purpose of these
new viewers is to provide fine grained support for understanding
objects representing data structures. When a class has more than
one type of view associated with it, the user can open multiple
viewers in order to compare different aspects of the structure.
These viewers are tightly integrated with the jGRASP workbench
and debugger and can be opened for any object in the Workbench
or Debug tabs of the Virtual Desktop.

Although many visualization techniques have been shown to be
pedagogically effective, they are still not widely adopted. The

reasons include: lack of suitable methods of automatic generation of
visualizations; lack of integration among visualizations; and lack of
integration with basic integrated development environment (IDE).
To effectively use visualizations when developing code, it is useful
to automatically generate multiple synchronized views without
leaving the IDE. The jGRASP IDE provides object viewers that
automatically generate dynamic, state-based visualizations of
objects and primitive variables in Java. Such seamless integration
of a lightweight IDE with a set of pedagogically effective software
visualizations should have a positive effect on the usefulness of
software visualizations in a classroom environment. Multiple
instructors have reported positive anecdotal evidence of their
usefulness. We conducted formal, repeatable experiments to
investigate the effect of these viewers on student performance when
working with binary trees. The results indicated a statistically
significant improvement over traditional methods of visual
debugging.

2. RELATED WORK
The approach we have taken for the state-based viewers in jGRASP
is to automatically generate the visualization from the user’s
executing program and then to dynamically update it as the user
steps through the source code in either debug or workbench mode.
This is somewhat similar to the method used in Jeliot [1]. However,
jGRASP differs significantly from Jeliot in its target audience.
Whereas Jeliot focuses on beginning concepts such as expression
evaluation and assignment of variables, jGRASP includes
visualizations for more complex structures such as linked lists and
trees. In this respect, jGRASP is similar to DDD [2]. The data
structure visualization in DDD shows each object with its fields and
shows field pointers and reference edges in a general way that is not
tailored to the type of data structure being viewed. In jGRASP,
each category of data structure (e.g., linked list vs. binary tree) has
its own set of views and subviews which are intended to be similar
to those found in textbooks. Although we are planning to add a
general linked structure view, we began with the more intuitive
“textbook” views to provide the best opportunity for improving the
comprehensibility of data structures.

We have specifically avoided basing the visualizations in jGRASP
on a scripting language, which is a common approach for algorithm
visualization systems such as JHAVÉ [3]. We also decided against
modifying the user’s source code as is required by systems such as
LJV [4]. Our philosophy is that for visualizations to have the most
impact on program understanding, they must be generated as
needed from the user’s actual program during routine development.

3. DATA STRUCTURE IDENTIFIER
We began this work by creating specific viewers for several of the
common data structures in the Java Collections Framework

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE’07, March 7–11, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003…$5.00.

including ArrayList, LinkedList, TreeMap, and HashMap. After
the development of these individual viewers reached steady state,
we developed a Viewer API based on their common features that
enables users to quickly construct a viewer for a specific class (e.g.,
their own linked list class). Source code for example viewers that
use the API is included with the jGRASP distribution to expedite
the creation of new viewers by students and/or faculty. Although a
new viewer can be created by changing about 10 lines of source
code in one of the examples, this approach proved somewhat
impractical for the general CS2 population. While this option needs
to be available for faculty, we quickly found out that it is unrealistic
to expect students who are in the process of learning about data
structures to be able to modify a separate viewer class in order to
see an instance of their own data structure. Thus, we turned our
attention to building a mechanism that could determine if an
instance was a linked list or binary tree based on a set of heuristics,
and then automatically generate an appropriate view.

The Data Structure Identifier, which is automatically invoked when
a viewer is opened, works as follows. For common node-and-link
implementations of structures, where nodes are objects and links are
object references, automatic identification is done by examining
class structure, and by examining links in the instance that is about
to be viewed. A class and its fields are first examined for same-
class-references and possible structure mappings are considered.
For example, a singly linked list is typically implemented as a class
with a field (the head node link) whose class type has one same-
class-reference (to the next node). This method may lead to multiple
possible structures and to multiple possible mappings from a class
to a particular structure. Name-based heuristics are used to assign a
confidence level to each candidate. For example, a class named
MyTree containing a field called root, of a type with same-class-
reference fields called left and right is highly likely to be a binary
tree, and it is highly likely that the left and right fields are left and
right binary tree links respectively. The same class structure could
also map to a doubly-linked list, but the class and field names make
it very unlikely that this was the intention. The downside of this
technique is that it will only work if the language used for class and
field names is known. Currently, only English-language heuristics
are applied. Also, the use of unusual or meaningless class and field
names will make correct identification less likely. In cases where
automatic identification fails, the viewer can be configured
manually.

In addition to the name-based heuristics, link-based heuristics affect
the confidence level for non-empty structure instances. Links in a
potential binary tree or linked list will be examined to see if they do
form a binary tree or linked list structure, and the confidence level
will be modified appropriately. Since the viewer may have been
initiated when the structure was in the process of being modified, a
small number of errors in the structure will have little effect on the
confidence level. An effect of employing this method is that for
some structures, a more accurate identification may be achieved for
non-empty instances than for empty ones.

The structure mapping with the highest confidence level found
during automatic identification, if it is significantly higher than the
confidence level for other potential mappings, will be automatically
used when a viewer is first opened for a particular class. In most
cases, one and only one mapping with a high confidence level will
be found, and thus the mechanism will be transparent to the user.
That is, an appropriate structural view will be displayed without
user interaction. In cases where there are multiple mappings with

similar confidence levels or where no mapping is found, the user is
given the option of manually configuring the viewer (this can also
be done while the viewer is in use). A configuration dialog allows
the Java expressions that will be used to traverse the structure to be
entered or edited. For example, for a singly linked list, expressions
for the head node, next node (given a node), and display value
(given a node), are required. Any mappings that were found during
the automatic analysis are made available on a drop-down list.
Once the structure mapping has been selected, specified, or
modified using this dialog, the new mapping will automatically be
applied the next time the user opens a viewer on an instance of the
same class.

The “nodes” used in the structure mappings need not be actual node
objects in the structure. Using synthetic node values allows
structures where nodes are not individual objects (or links are not
object references) to be displayed. For example, a binary heap is
typically implemented using an array of node values and a size
value. The links are implicit. The integer index of a node value can
be used as the “node” in the mapping expressions. This allows the
implicit binary tree to be mapped and displayed as a binary tree.
Automatic identification of such structures is done using name-
based heuristics and by examining instance characteristics for
consistency with the expected structure. The heuristics are
necessarily more restrictive than for node-and-link
implementations, since the possible mappings are more common.
Any class with an array field and an int field, for example, might be
a binary heap. Unless the class and field names are suggestive of a
binary heap, such a possible mapping will be ignored.

4. AN EXAMPLE
BinaryTreeExample.java, which is provided with jGRASP, is
intended to be representative of a “textbook” example or of what a
student may write. Its main method creates an instance of
BinaryTree and then adds instances of BinaryTreeNode to it. The
UML class diagram in Figure 1 shows that BinaryTreeExample
depends on BinaryTree which depends on BinaryTreeNode.

In order to open a viewer, a breakpoint is set in main, and then the
program is run in debug mode. After an instance of BinaryTree is
created, a viewer is opened by dragging the instance out of the
debug window. During the process of opening the viewer, the Data
Structure Identifier determines, in this case, that the object is a
binary tree structure and opens the appropriate viewer. As the user
steps though the program and into the add() method, the nodes
appear in the viewer. Figure 2 shows the program while stepping in
the add() method. Figure 3 shows the instance of BinaryTree after
three nodes have been added and a fourth node is about to be added.
Local variable branch indicates the position in the tree where the
fourth node will be added. When the fourth node is added, the
animation provided by the viewer shows the node “sliding” up into
the tree. Figure 4 depicts the viewer after the node has been added
but prior to size being incremented. Notice that size is incremented
just below the location of the debug step in Figure 2. Students have
indicated that seeing the links being set correctly (or incorrectly) as
they step through their code is extremely helpful with respect to
their understanding of exactly how the implementation relates to the
abstraction of the data structure itself. That is, seeing a node added
on the blackboard as links are redirected is easy, but when it comes
to understanding how this happen in the actual code, it is suddenly
not so easy.

Figure 1. UML class diagram of BinaryTreeExample.java

Figure 3. View after local node has been created and is about to
be added to the binary tree

Figure 2. CSD window of jGRASP with the debugger after
stopping in at a break point and then stepping in the add()
method

Figure 4. View after the node has “moved” from the local space
into the binary tree and prior to size being updated

However, seeing the data structure updated in the viewer as
individual statements are executed makes a direct connection
between the implementation and the abstraction, and therefore
provides a greater opportunity for deeper understanding. The
results of two controlled experiments, described in the next section,
support this informal feedback from students.

5. EVALUATION

5.1 Purpose
Numerous experiments conducted in the field of visualization of
data structures and algorithms were considered in the literature
review [Hundhausen et al. 2002]. All of these studies concentrate
on determining factors that affect the quality of pedagogical
effectiveness using visualization techniques or on determining
whether learning is enhanced using a particular system. There is yet
a requirement for tools that can assist students in their transition
from understanding a concept to being able to implement it.
jGRASP viewers are designed to address this deficiency.
We conducted two controlled experiments to test the following
hypotheses:
1. Students are able to code more accurately (with fewer bugs)

using the jGRASP data structure viewers.
2. Students are able to find and correct “non-syntactical” bugs

more accurately using jGRASP viewers.

5.2 Subjects
Two criteria were important when choosing subjects for our
controlled experiments. First, the subjects must be a close
representation of the target population. The jGRASP viewers are
being developed primarily for students enrolled in an introductory
level data structure and algorithms course. Students enrolled in
Fundamentals of Computing II (COMP 2210) at Auburn University
were used as subjects since they closely resemble the target
population. Second, the subjects must be relatively uniform in
regard to their programming abilities in order to minimize the
variance between groups.
We designed experiments that were closely integrated with course
requirements and complemented the lab assignments. For example,
we conducted the experiments on singly linked lists, and assigned
programming projects on doubly linked lists. In Spring 2006, the
students completed eight in-lab activities as a part of the
COMP2210 course. These were attendance-based, ungraded, in-lab
activities that comprised of 5% of the course grade. All in-lab
activities were conducted during the respective lab time of each
section in a particular computer lab on campus. This ensured
control over the hardware and software used by the subjects, and
that the schedule of experiments did not conflict with the subjects’
course-work.

We designed experiments based on the between-group approach to
avoid the transfer of concepts learned in early experiments to a later
experiment. An equal number of subjects were assigned to two
separate groups. The groups were balanced based on two specific
programming skills – the ability to detect and correct logical errors
and the ability to comprehend and trace programs [7]. Students in
Group 1 were familiarized with the jGRASP debugger and students
in Group 2 were familiarized with both the debugger and jGRASP
viewers. Learning how to use the viewers took less than five
minutes.

5.3 Experiment 1
Our hypothesis was that students would be more productive (would
code faster and with greater accuracy) using the jGRASP data
structure viewers. Students were asked to implement a basic
traversal operation for linked binary search trees. The program
LinkedBinarySearchTree.java (from the class textbook [5]) was
used in this experiment. Students were provided a detailed
description of the programming assignment and the grading policy.
Students were required to work independently and were timed
(although there was no time limit to complete the assignment). The
independent variable was the visualization medium (coding using
jGRASP viewers vs. without viewers). The dependent variables
were: time taken to complete the assignment, and the accuracy of
the assignment.

The control group implemented the level order traversal using the
jGRASP visual debugger. The driver program provided to this
group contained a toString() method so that they could print out the
contents of the list without writing additional code. The treatment
group implemented the same method using the jGRASP object
viewers. Since our algorithm for levelOrder() traversal required
three different data structures, we provided the students with three
viewers (for LinkedBinaryTree, LinkedQueue and
ArrayUnorderedList). The driver program given to this group did
not contain the toString() method, so the subjects had to use the
viewers in order to see the contents of the list. The machines in the
lab were set up with permissions such that only the treatment group
had access to the viewers.

5.4 Experiment 2
Our hypothesis was that students would be able to detect and
correct logical bugs more accurately and in less time using jGRASP
viewers. A Java program implementing a linked binary search tree
with five logical errors, one in each of the following methods
addElement(), findAgain(), removeElement(), inOrder() and
postOrder() was provided. Students were asked to find and correct
all the errors. The independent variable was the visualization
medium (finding errors using jGRASP viewers vs. without
viewers). The dependent variables were: number of bugs found,
number of bugs accurately corrected, and number of new bugs
introduced in the program while performing the experiment.

Both the groups were first required to identify and document errors
on paper. Next, the control group corrected the detected errors
using the jGRASP visual debugger, and the treatment group
corrected the errors using the jGRASP object viewers.

5.5 Results and Discussion
Collection of data was strictly contingent on student consent.
Students were eligible for 5% of the course grade for the in-lab
activities even if they decided to opt-out of data collection. Our
scoring of the students' work will constitute a grade that will be
used to calculate up to three extra points on their final numeric
average. For each group, we will create four quartiles. Quartile 1
(i.e. top 25% of the students) will get three bonus points, quartile 2
will get two bonus points, quartile 3 will get one bonus point.
Using this scheme both groups will be rewarded similarly
regardless of the experimental treatment they receive.

We used Hotelling’s T2 statistic to analyze our data since we have
two dependent matched groups and more than one response
variable for each experiment. Hotelling’s T2 is a multivariate

counterpart of Student's t-test which is typically performed for
univariate data [6]. Tests were conducted to check the normality of
the distribution and the population was found to be normal for both
experiments.

5.5.1 Results of Experiment 1
The null hypothesis was that there would be no difference in the
accuracy and time taken for both groups. The mean time taken by
the group with viewers was 69 minutes while the mean time taken
by the group without viewers was 82 minutes. The mean accuracy
of the treatment group with viewers was 6.93 points, while the
mean accuracy of the control group without viewers was 5.06
points.

For the 34 samples in each group, Hotelling’s T2 statistic was
calculated to be 20.565. The critical value for α = 0.05, p=2 (two
response variables), and n=34 (sample size) was 4.139. P-value
was calculated to be 0.00007. Since the T2 value is much greater
than the critical value, and p-value is much less than the α value, we
can strongly reject the null hypothesis. Thus, there was a statistical
significant difference between the two groups, and we can say that
in 95% of all cases, jGRASP object viewers helped increase the
accuracy and reduce the time taken to write programs implementing
data structures.

5.5.2 Results of Experiment 2
The null hypothesis was that there would be no difference in the
number of bugs detected, corrected, introduced, and the time taken
for both groups. The mean time taken by the group with viewers
was 57.61 minutes, while the mean time taken by the group without
viewers was 67.38 minutes. On average, the group using viewers
located 3.19 errors, corrected 2.96 errors and introduced 1.66 errors,
and the group without the viewers located 2.03 errors, corrected
1.69 errors and introduced 1.88 errors.

For the 34 samples in each group, Hotelling’s T2 statistic was
calculated to be 22.121. The critical value for α = 0.05, p=4 (four
response variables), and n=26 (sample size) was 7.089. P-value
was calculated to be 0.0005. Since the T2 value is much greater than
the critical value, and p-value is much less than the α value, we can
strongly reject the null hypothesis. Thus, there was a statistical
difference between the two groups, and we can say that in 95% of
all cases, jGRASP object viewers helped increase the accuracy and
decrease the time taken to write programs implementing data
structures.

5.6 Other Experiments
We also carried out similar controlled experiments for singly linked
lists [7]. For experiment 1, students were asked to implement four
basic operations for singly linked lists – entry(), delete(), insert(),
and contains(). For experiment 2, students were given a Java
program implementing a singly linked list with nine errors in four
methods add(), insert(), delete() and contains(). As with the
experiments using linked binary search trees, the treatment group
using viewers performed significantly better than the control group
without viewers. Students were more productive and were able to
detect and correct logical bugs more accurately using the jGRASP
viewers.

6. SUMMARY AND FUTURE WORK
jGRASP object viewers automatically generate dynamic, state-
based visualizations of objects and primitive variables in Java.
Multiple synchronized visualizations of an object, including
complex data structures, are immediately available to users within
the IDE. Multiple instructors have used these viewers in CS1 and
CS2 and have reported positive anecdotal evidence of their
usefulness. The authors conducted formal, repeatable experiments
during the Spring 2006 academic term to investigate the effect, if
any, these viewers have on student learning, performance, and
retention. The results indicated that the data structure viewers can
indeed be beneficial for students learning about traditional data
structures.

We compared the average scores of students in Group 1 and Group
2 in quizzes, exam 1, exam 2 and final exam for the course COMP
2210. In all four cases the performance of Group 2 was much better
than Group 1. Early indicators suggest that jGRASP viewers help
with retention of concepts as well. We are currently building a
database of example Java programs from available data structure
textbooks. We plan to continue to refine the heuristics in the Data
Structure Identifier with a goal of automatically recognizing 95% of
the classes that represent common linked data structures.

7. ACKNOWLEDGMENTS
The development of jGRASP has been supported by a research
grant from the National Science Foundation.

8. REFERENCES
[1] Kannusmaki, O., Moreno, A., Myller, N., Sutinen, E. What a

novice wants: students using program visualization in
distance programming course. Proc. of Third Progam
Visualization Workshop, July 1-2, 2004, 126-133.

[2] Zeller, A. Visual Debugging with DDD. Dr. Dobb’s, July
2001 (http://www.ddj.com/184404519).

[3] Naps, T. JHAVÉ: supporting algorithm visualization. IEEE
Computer Graphics and Applications, Sep-Oct 2005, 49-55

[4] Hamer, J. A lightweight visualizer for Java. Proc. of Third
Progam Visualization Workshop, July 1-2, 2004, 55-61.

[5] Lewis, J and Chase, J. Java Software Structures: Designing
and Using Data Structures, 2ed, Addison-Wesley, 2005.

[6] Johnson, R. A., and Wichern, D. W. Applied multivariate
statistical analysis, 4ed, 1998, Prentice-Hall.

[7] Jain, J., Cross, J., Hendrix, D., and Barowski, L.
Experimental Evaluation of Animated-Verifying Object
Viewers for Java. ACM Symposium on Software Visualization
(SoftVis), September 4-5, Brighton, UK, 2006.

[8] Hundhausen C., Douglas S., Stasko J. T. A Meta-Study of
Algorithm Visualization Effectiveness. Journal of Visual
Languages and Computing, 2002, vol. 13, pp. 259-290.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

