
Visualization and Measurement of Source Code
James H. Cross II, Kai H. Chang, T. Dean Hendrix, and Richard O. Chapman

Auburn University
Patricia A. McQuaid

California Polytechnic State University at San Luis Obispo

The GRASP (Graphical Representations of Algorithms, Structures, and Processes) project,
which has successfully prototyped a new algorithmic-level graphical representation for
software—the control structure diagram (CSD)—is currently focused on the generation of a
new fine-grained complexity metric called the complexity profile graph (CPG). The primary
impetus for creation and refinement of the CSD and the CPG is to improve the
comprehension efficiency of software and, as a result, improve reliability and reduce costs.
The current GRASP release provides automatic CSD generation for Ada 95, C, C++, Java,
and Very High-Speed Integrated Circuit Hardware Description Language (VHDL) source
code, and CPG generation for Ada 95 source code. The examples and discussion in this
article are based on using GRASP with Ada 95.

omputer professionals have long promoted the idea that graphical representations of software can be
extremely useful as comprehension aids when used to supplement textual descriptions and specifications

of software, especially for large complex systems. The general goal of the GRASP research project is the
investigation, formulation, and generation of graphical representations of algorithms, structures, and processes
for source code written in languages such as Ada 95, C, C++, Java, and VHDL.

The CSD and the CPG
This article focuses on the generation or reverse engineering of CSDs and CPGs from source code for
visualization and measurement. The CSD is an algorithmic-level graphical representation for software. The
CPG is a new visualization of a fine-grained complexity metric. By synchronizing the CSD and the CPG, the
CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of
statement-level complexity in the CPG.
 The CSD has been designed to be an intuitive, compact, and nondisruptive visualization of control structure
[1, 2]. The basic graphic symbols of the CSD are intuitive and suggest their purpose by their appearance. For
example, diamond-shaped symbols are used to mark decisions as in the ubiquitous flowchart, and Grady Booch
symbology [3] is used to mark program units such as subprograms, modules, and classes. The CSD is compact,
taking up no more room on the printed page or display screen than normal, plain-text source code. The CSD is
nondisruptive to the source code—the CSD retains the appearance of traditional pretty-printed source code by
acting as a companion to, rather than a replacement for, the code.
 The CPG is based on a set of functions that describe the context, content, and the scaling for complexity on a
statement-by-statement basis [4]. When rendered graphically, the result is a composite profile of complexity for
the program unit. Ongoing research includes the development and refinement of the associated functions and
the development of the CPG generator prototype.

GRASP and CASE Tool Integration
The GRASP tool offers a level of flexibility suitable for experimentation, evaluation, and practical application.
It is expected that GRASP will be integrated with existing computer-aided software engineering (CASE) tools
in which the primary motivation for the generation of graphical representations is increased support for
software lifecycle activities that range from design to maintenance with emphasis on visual verification and
measurement. These activities should be greatly facilitated by an automatically generated set of formalized
diagrams and graphs to supplement the source code and other forms of existing documentation.

1 of 7 11/18/2002 11:34 AM

Visualization and Measurement of Source Code - Dec 97 http://www.stsc.hill.af.mil/crosstalk/1997/12/visualization.asp

 An important goal of the GRASP project is to provide the foundation for a CASE environment in which
reverse engineering and forward engineering (development) are tightly coupled. In such an environment, the
user may specify the software in a graphically oriented language, then automatically generate the corresponding
source code. Alternatively, the user may design or review source code, then automatically generate the
graphical representations either dynamically as the code is entered or as a form of post-processing. The GRASP
software tool has the potential to be a powerful aid in environments where source code is expected to be written
or read.
 The tool is particularly suitable for activities during detailed design, implementation, testing, maintenance,
and reengineering. The CSD is expected to be a valuable aid in comprehension and analysis of overall program
structure and flow of control, while the CPG is expected to provide additional valuable insight by visualizing
the complexity of both context and content of program elements.

Visualizing Structure and Complexity
GRASP is a continually evolving software engineering tool. The emphasis to this point has been on visualizing
program structure via the automatic generation of CSDs from source code to support development,
maintenance, reverse engineering, and reengineering. GRASP now provides the capability for the user to
generate CSDs from Ada 95, C, C++, Java, or VHDL source code in a reverse engineering mode, as well as
forward engineering mode, with a level of robustness suitable for use in a commercial environment. The use of
software visualizations and graphical representations such as the CSD as aids in program comprehension tasks
is well documented [5,6,7,8].
 Although the CSD is useful to intuitively visualize the control structures and control paths present in source
code, to fully aid program comprehension tasks, additional information needs to be visualized. It is important
that the reader locate complex portions of code so that those areas may be given a more careful examination.
For this reason, GRASP has been extended to automatically generate the CPG visualization of complexity.

Figure 1. Synchronized CSD and CPG in GRASP.

 Figure 1 shows a coherent and synchronized GRASP visualization of both program structure and program
complexity. In the first window, an Ada tasking example from [9] is rendered as a CSD, and in the second
window it is rendered as a CPG. Both windows are synchronized with each other, which allows the user to
scroll one and the other will automatically scroll, or the user may select a particular location in one window and
the other window will automatically highlight its corresponding location. The CPG clearly suggests that the
most complex area of the code is centered at line seven, where the procedure Action is called during the
rendezvous.
 Each bar in the CPG represents the complexity of the corresponding source code construct displayed in the
CSD window. Since the CSD and CPG are synchronized, the user can easily identify complex regions of code

2 of 7 11/18/2002 11:34 AM

Visualization and Measurement of Source Code - Dec 97 http://www.stsc.hill.af.mil/crosstalk/1997/12/visualization.asp

via the CPG and quickly navigate to them in the CSD window. This capability is especially useful in large
software systems where it is difficult to measure, evaluate, and comprehend the source code as a whole. Figure
2 shows a portion of the CPG for a software system written in Ada 95 that contains approximately 3,700 lines
of code. Though it cannot be considered a large system, it serves well to illustrate the CPG's potential
usefulness in larger systems. The most complex region of code in this example is easily identified in the right
region of the CPG where the graph "spikes." With a single click, the user can immediately access the source
code for that region in a synchronized CSD window. When the user points and clicks within this complex
region of the CPG, the CSD automatically scrolls to this location in the source code.

Figure 2. Complexity Profile Graph for a larger program.

 Since the CSD window provides full-featured text editing (as well as compilation, linking, and execution of
programs), the user can restructure complex areas of code, and the corresponding effect will be immediately
visualized in the CPG.

Measurable Units of Software
The CPG is based on a profile metric that is designed to compute complexity at various levels of granularity
based on the underlying source language. We will call these various levels of granularity measurable units of
software. The fundamental idea of the profile concept is that software can be partitioned into a set of
measurable units in such a way that each token belongs to exactly one such unit. For example, an Ada 95
program is grammatically partitioned into individual program units (package, subprogram, task, etc.), and each
of these can be further partitioned into statements, etc. Theoretically, complexity can be calculated for any level
of granularity defined by the grammar of the source language. In our present research, we calculate complexity
at the production level in the source language grammar.
 The complexity of both the content and the context
complexity measures: content complexity, inherent complexity, reachability complexity, and breadth
complexity. Each of these four measures, as well as total complexity, may be plotted as a CPG independently of
the others as shown in Figure 3 and Figure 4. The CPG measures are color coded when displayed on a color
computer screen.

3 of 7 11/18/2002 11:34 AM

Visualization and Measurement of Source Code - Dec 97 http://www.stsc.hill.af.mil/crosstalk/1997/12/visualization.asp

Figure 3. CPG showing content and total complexity plotted separately.

Figure 4. CPG showing all four measures plotted separately along with total complexity.

Tool Verification
Visualization and measurement tools such as GRASP are nontrivial to develop. There are many, often subtle,
details for which the tool could produce incorrect results. Therefore, it is important that tools such as GRASP be
verified as being robust enough for practical application. GRASP includes a self-test feature that runs in batch
mode (without the graphical user interface) and processes specified directories of source code. During this
self-test, each component of GRASP is tested, including the lexer/parser, CSD generator, and CPG generator.
Each file in the specified directory is parsed, and both the CSD and CPG are generated and checked for errors.
For example, the CSD is checked for validity against a set of approximately 300 rules that describe a
well-formed diagram. In addition to the various checks against the CSD and CPG, a byte-level scan of the file is

4 of 7 11/18/2002 11:34 AM

Visualization and Measurement of Source Code - Dec 97 http://www.stsc.hill.af.mil/crosstalk/1997/12/visualization.asp

performed to ensure that GRASP has not changed in any way the underlying source code.
 The Ada Compiler Validation Capability (ACVC) suite is used for the Ada 95 self-test. The ACVC consists
of positive tests (correct code) and negative tests (code with syntactic and semantic errors). GRASP has
successfully passed the self-test on all positive and negative ACVC test files. This rigorous verification process
is important to ensure a continued level of robustness and efficiency from GRASP.

Additional Capabilities
The GRASP research project continues to explore new areas of software visualization and measurement. Unit
symbols based on the widely used Booch architectural diagram notation [3] have been integrated into the CSD.
These architectural-level symbols at the source-code level will provide a visual link to the architecture level of
the software under consideration. Part of our future research will be to automatically generate appropriate
architecture-level diagrams and hyperlink them to the source code via these new CSD symbols.
 We also are investigating ways that GRASP can address the problems of developing and maintaining
multilingual software. A tool such as GRASP that can provide visualization and measurement for source code
written in Ada, C, C++, and Java would be well suited to develop or maintain software systems with component
modules that are written in more than one language. Multilingual support for CPG generation is expected to be
added.
 To extend GRASP to a different domain, we recently added support for VHDL. Originally developed as a
hardware simulation language, VHDL has become an industry standard for specification of digital hardware as
well [10]. Our implementation provides VHDL developers (or circuit designers working from VHDL code as a
specification) with a graphical representation of behavioral VHDL code, similar to that provided to an Ada
programmer by GRASP. Such a representation is particularly useful for the VHDL community because of the
nature of the hardware design process. VHDL code is not an implementation, as in the Ada case, which is
useful for its own sake, but is a specification to be read and understood by designers who must translate it into
circuitry. Given this, code readability is of paramount importance for users of VHDL.

Conclusion
The emphasis of the GRASP project is automatic generation of the CSD and CPG from source code to support
software lifecycle activities. These lifecycle activities should be greatly facilitated by an automatically
generated set of formalized diagrams and charts to supplement the source code and other forms of
documentation. Code reading is still a popular and viable verification and testing strategy as evidenced by
current literature [11,12,13]. Hence, improved comprehension efficiency that results from the integration of
graphical notations and source code could have a significant impact on the overall cost of software production.
 The current release of GRASP provides users the capability to generate CSDs and CPGs from Ada source
code with a level of flexibility suitable for practical application. The CPG has the potential to provide more
useful information than traditional metrics by incorporating both the content and the context complexities into
the metric. The CPG seeks to identify not only complex statements but also complex sets of statements and
regions of code called clusters. Once the clusters are identified, paths to reach the clusters, as well as other
high-complexity paths, can be identified. The primary theme of all applications is to locate and prioritize
clusters for selective consideration and to concentrate efforts on denser regions where exhaustive review is
impractical. This information has direct application as a form of continuous feedback for analysis to software
design, implementation, testing, maintenance, and the software development process. A major thrust of our
ongoing research is the empirical validation of the CPG and the underlying complexity functions for context
and content. This research will help determine the overall usefulness of the CPG as well as the best activities for
its application.
 The GRASP software tool has been verified through a rigorous testing process using the ACVC suite. A
robust tool, such as GRASP, is essential for the evaluation of the CSD and CPG on any non-trivial Ada 95
software. GRASP is being used extensively in computer science and engineering courses at Auburn University,
and it has been downloaded from our Web site over 2,500 times by a diverse set of users. Version 6.2 is freely
available from http://www.eng.auburn.edu/grasp
Linux, Windows95, and WindowsNT. Currently, CPG generation is provided only in GRASP for Solaris,
SunOS, IRIX, and Linux.

5 of 7 11/18/2002 11:34 AM

Visualization and Measurement of Source Code - Dec 97 http://www.stsc.hill.af.mil/crosstalk/1997/12/visualization.asp

Acknowledgements
Research on the GRASP project has been supported, in part, by grants from NASA, Defense Information
Systems Agency (DISA), and Advanced Research Projects Agency (ARPA). Current graduate students working
on the GRASP research project include Larry Barowski, Karl Mathias, and Joseph Teate.

About the Authors
James H. Cross II is a professor and chairman of computer science and engineering at Auburn University. He
teaches undergraduate and graduate courses in software engineering and directs research in software methods,
quality assurance, testing, metrics, and reverse engineering. In particular, he is continuing the development of
software engineering courses in design methods and software environments. His research efforts include the
GRASP and QUEST/Ada projects, which have received funding from NASA, DISA, and ARPA. He has over
40 refereed publications.

Computer Science and Engineering
107 Dunstan Hall
Auburn University, AL 36849-5347
Voice: 334-844-4330
Fax: 334-844-6329
E-mail: cross@eng.auburn.edu
Internet: http://www.eng.auburn.edu/grasp

Kai H. Chang is an associate professor of computer science and engineering at Auburn University. He is
primarily interested in teaching undergraduate and graduate courses in artificial intelligence and expert systems
and directing research in expert systems, software quality assurance, testing, metrics, and computer-supported
cooperative work environments. His continuing research efforts include the QUEST/Ada project and the
Distributed Collaborative Writing Aid project, which has received funding from the National Institute of
Standards and Technology. He has over 30 refereed publications.

T. Dean Hendrix is an assistant professor of computer science and engineering at Auburn University. His
research interests include software methods, software metrics, reverse engineering, software visualization, and
programming languages, including his work with the GRASP project. His teaching interests include courses in
software engineering and database systems. He has over 15 refereed publications.

Richard O. Chapman is an assistant professor of computer science and engineering at Auburn University. His
research interests include high-level synthesis, hardware-software co-design, and formal methods for hardware
and software verification. Chapman's teaching interest are undergraduate and graduate courses in Very
Large-Scale Integration computer-aided design, tool design, formal semantics, compilers, and operating
systems. His continuing research in high-level synthesis and hardware-software co-design is funded by a
CAREER award from the National Science Foundation. He has over 15 refereed publications.

Patricia A. McQuaid is an assistant professor of management information systems at
California Polytechnic State University at San Luis Obispo. She has taught a wide range of
courses in both the colleges of Business and Engineering. Her research interests include
software quality and software testing, particularly in the area of complexity metrics and is the
developer of the Profile Metric. She has industry experience in computer auditing and is a
certified information systems auditor. She has been invited to speak on the Profile Metric at
national and international conferences and has over 15 refereed publications.

Management Information Systems Area
California Polytechnic State University
San Luis Obispo, CA 93407

6 of 7 11/18/2002 11:34 AM

Visualization and Measurement of Source Code - Dec 97 http://www.stsc.hill.af.mil/crosstalk/1997/12/visualization.asp

Voice: 805-756-5381
Fax: 805-756-1473
E-mail: pmcquaid@calpoly.edu

References

1. Cross, J.H., "Improving Comprehensibility of Ada with Control Structure Diagrams," Proceedings of the
Software Technology Conference, Salt Lake City, Utah, April 11-14, 1994.

2. Cross, J. H., K. H. Chang, and T. D. Hendrix, "GRASP/Ada95: Visualization with Control Structure
Diagrams," Crosstalk, STSC, Hill Air Force Base, Utah, January 1996, pp. 20-24.

3. Booch, Grady, Object-Oriented Analysis and Design with Applications, 2nd ed., Addison-Wesley, Menlo
Park, Calif. 1994.

4. McQuaid, P.A., K.A. Chang, and J.H. Cross, "The Profile Metric: A Complexity Metric to Improve
Software Quality," Proceedings of the Fifth European Conference on Software Quality, Dublin, Ireland,
Sept. 16-20, 1996.

5. Baecker, R. M. and A. Marcus, Human Factors and Typography for More Readable Programs, ACM
Press, 1990.

6. Backer, R., C. DiGiano, and A. Marcus, "Software Visualization for Debugging," Communications of the
ACM, Vol. 40, No. 4, April 1997, pp. 44-54.

7. Petre, M., "Why Looking Isn't Always Seeing: Readership Skills and Graphical Programming,"
Communications of the ACM, Vol. 38, No. 6, 1995, pp. 33-44.

8. Price, B. A., R. M. Baecker, and I. S. Small, "A Principled Taxonomy of Software Visualization," Journal
of Visual Languages and Computing, Vol. 4, No. 3, 1993, pp. 211-266.

9. Barnes, J. G. P., Programming in Ada, 2nd ed., Addison-Wesley, Menlo Park, Calif., 1984.
10. IEEE Standard VHDL Language Reference Manual 1076-1993, IEEE Computer Society Press, Los

Alamitos, Calif., 1993.
11. Basili, Victor and Richard Selby, "Comparing the Effectiveness of Software Testing Strategies," IEEE

Transactions on Software Engineering, December 1987, Vol. SE-13, No.12, pp.1278-96.
12. Ebenau, Robert, "Predictive Quality Control with Software Inspections," Crosstalk, STSC, Hill Air Force

Base, Utah, June 1994, pp.9-16.
13. Knight, John C. and B. Littlewood, "Critical Task of Writing Dependable Software," IEEE Software,

Vol.11, No.1, January 1994, pp.16-20.

7 of 7 11/18/2002 11:34 AM

Visualization and Measurement of Source Code - Dec 97 http://www.stsc.hill.af.mil/crosstalk/1997/12/visualization.asp

