
Viewers (1.8.7) 9/2/2009

10-1

10 Viewers for Data Structures
Viewers for objects and primitives are briefly introduced in Getting Started with
Objects, The Workbench, and The Integrated Debugger. In this tutorial, we
introduce a family of “Presentation” views for data structures. A presentation
view is a conceptual view similar to what one might find in a textbook but with
the added benefit of being dynamically updated as the user steps through the
program.

Objectives – When you have completed this tutorial, you should be able to open
a viewer for any data structure object displayed in the Debug or Workbench
tabs, set the view options in the viewer window, and select among the views
provided by the viewer.

The details of these objectives are captured in the hyperlinked topics listed
below.

10.1 Introduction
10.2 Opening Viewers
10.3 Setting the View Options
10.4 Selecting Among Views
10.5 Presentation Views for LinkedList, HashMap, and TreeMap
10.6 Presentation Views for Code Understanding

10.6.1 LinkedListExample.java
10.6.2 BinaryTreeExample.java
10.6.3 Configuring Views generated by the Structure Identifier

10.7 Using the Viewers from the Workbench
10.8 Summary of Views
10.9 Exercises

Viewers (1.8.7) 9/2/2009

10.1 Introduction
 jGRASP viewers are tightly integrated with the workbench and debugger. They
can be opened for any primitive, object, or field of an object in the Debug or
Workbench tabs. To use viewers with the debugger, (1) set a breakpoint in your
program, (2) run Debug (), (3) after a local variable has been created, drag it
from the Debug tab, (4) step through program and observe the object in the
viewer. To use viewers with the workbench, (1) create an instance from the
UML window, the CSD window (), or Interactions tab, (2) drag the instance
from the Workbench tab, (3) invoke methods on the instance and observe the
object in the viewer.

Note that once an instance is in the workbench tab or debug tab, its methods can
be invoked via the Invoke Method dialog or by entering Java statements and/or
expressions in the Interaction tab. When methods are invoked on the instance,
any open viewers on it are updated as appropriate.

jGRASP includes a general view for data structures called Presentation –
Structure Identifier (SI) which automatically detects linked lists, binary trees,
and array wrappers (lists, stacks, queues, etc.) when a viewer is opened on one
of these during debugging or workbench use. For linked structures, this is an
animated view that shows nodes being added and deleted from the data
structure. This view is also configurable with respect to the structure mappings
and the fields to display. jGRASP also includes custom Presentation views for
many of the classes in the Java Collections Framework (e.g., ArrayList, Stack,
LinkedList, TreeMap, and HashMap). These non-animated views are optimized
for large numbers of elements.

10.2 Opening Viewers

 Let’s begin by opening one of the example programs that comes with the
jGRASP installation. After you have started jGRASP, use the Browse tab to
navigate to the jGRASP\examples\Tutorials folder. If you have been working
with the examples in the “Hello” or “PersonalLibrary” folders, you’ll need to go
up one level in the Browse tab by clicking the up arrow. [Note that you should
copy this folder to a personal directory. This will need to be done using a file
browser rather than jGRASP.] In the Tutorials folder you should find a folder
called ViewerExamples. Open this folder by double-clicking on the folder
name, and you should see a file called ArrayListExample1.java. Open this file
by double-clicking the file name (Figure 10-1).

10-2

Viewers (1.8.7) 9/2/2009

Figure 10-1. ArrayListExample1.java

A quick review of the program shows that it creates an ArrayList called list and
adds strings to it from an array called stringList. Compile the program by
clicking the green plus . Since the viewers are for visualizing objects and
primitives as the program executes, let’s set a breakpoint on the first line of the
for statement. To do this, move the mouse over the left margin next to the
statement until you see the breakpoint symbol and then left-click. You
should see the in the margin if you have successfully set the breakpoint. Now
start the debugger by clicking on the toolbar. Figure 10-1 shows the program
stopped at the for statement. At this point in the program, the list object has
been created, and it is shown in the Debug Variables tab. However, no elements
have been added to list.

 A separate Viewer window can be opened for any object (or field of an object)
in the debug tab (or on the workbench). The easiest way to open a viewer is to
left-click on an object and drag it from the debug tab (or workbench) to the
location where you want the viewer to open. When you start to drag the object,
a viewer symbol should appear to indicate a viewer is being opened. [Note: You
can also open a viewer by right-clicking on the list object and selecting either

10-3

Viewers (1.8.7) 9/2/2009

View by Name or View Value.] Let’s left click on list and drag it from the
Debug tab. When you release the left mouse button, the viewer should open.

Figure 10-2 shows a viewer opened on list before any elements have been
added. Note that the default View for an instance of ArrayList is Presentation –
Structure Identifier. This view shows the fields for size and modCount along
with the underlying array with its default size of 10.

To add elements to list, step through the program by clicking the “Step” button
 on the Debug tab. Since the viewer is updated on each step, you should see

the elements being added to the list. Red text indicates a change or, in this case,
a new element. Figure 10-3 shows the view of list after going through the loop
three times. As you continue to step through the program, notice that when
elements are removed, the value stays in the array but the size is decremented.

Figure 10-2. View of list with no elements

Each jGRASP Presentation viewer provides one or more subviews. When an
element is selected as indicated by a red border, a view of the element itself is
shown in the subview. Figure 10-3 shows “ant” selected in the ArrayList view.
Since “ant” is a String, the subview is a String viewer for which the formatted
view is the default.

10-4

Viewers (1.8.7) 9/2/2009

Figure 10-3. View of list with 3 elements

10.3 Setting the View Options

For most Presentation views in jGRASP, several view options are available
which provide personal choices to users.

 Horizontal vs. Vertical – sets the orientation of the display.

Non-Embedded/Embedded – shows the elements outside or inside the
structure.

Normal vs. Simple – shows node pointer from inside or from edge of
structure.

Configure View – opens dialog to configure the structure-to-view
mapping as well as which fields to display in the viewer (discussed in
Section 9.5).

Width of Elements (slider) – sets the width of the boxes containing the
elements.

 Scale of View (slider) – scales the entire view.

Figure 10-4 indicates the location of the buttons and sliders for each view
option. Click on each of these and notice the change in the view. The ArrayList
is shown vertically after the display orientation is changed. The location of the
View drop down list and the Information button is also indicated below.

10-5

Viewers (1.8.7) 9/2/2009

10-6

Figure 10-4. View of list in vertical mode, width
set to 8, Scale set to 1.2, monkey selected and
shown in subview

Width of
Elements

(1 to 25 char)

Scale
(.025 to 4.0)

Normal
vs. Simple

Configure
Viewer

To Change
Views

Horizontal
vs. Vertical.

Non-Embedded
vs. Embedded

Info about
the View

Viewers (1.8.7) 9/2/2009

10.4 Selecting Among Views
Each viewer and subviewer provides one or more views among which you may
select from the respective View drop down lists. Let’s take a closer look at our
ArrayList of Strings example. The Presentation – Structure Identifier view is
the default for ArrayList and the other classes in the Java Collections
Framework. Other views include Basic, toString(), Presentation, and Collection
Elements.

Figure 10-5 shows the view options for ArrayList on the drop-down list (combo
box) with Presentation – Structure Identifier view selected. When monkey is
selected in the ArrayList, a String subview is opened. When this view is set to
Presentation view, the character array for monkey is displayed. Selecting the
first element in the array opens a subview for character m in monkey which is
set to the default Basic view.

10-7

Figure 10-5. Selecting the Collection Elements

Select view from drop-down list.

Viewers (1.8.7) 9/2/2009

Figure 10-6 shows the viewer after the Collection Elements view is selected. If
list has many elements, this may be a more appropriate view than the
Presentation view. The Collection Elements view was specifically designed to
handle larger numbers of elements efficiently. As the number of elements
increases, additional navigational controls appear on the viewer for moving
about in the ArrayList. Notice that two subviews are also shown in Figure 10-6.
When element 0 (indicated by “<0> = cat”) is selected in the Collection
Elements view, a subview for String opens below the main view. Notice that he
view for String has been set to Presentation in the figure; the default for String
is Formatted. When the ‘c’ in “cat” is selected, a second subview is opened for
the primitive type char, for which Basic is the default view. However, in the
figure, the view has been set to Detail, which displays additional information
about ‘c’ including its value in hexadecimal, octal, and binary.

Figure 10-6. The Collection Elements view of list with two subviews:
Presentation view for String “cat” and Detail view for char ‘c’

10-8

Viewers (1.8.7) 9/2/2009

10.5 Presentation Views for LinkedList, HashMap, and TreeMap
The ViewerExamples folder contains a program, CollectionsExample.java,
which creates instances of classes from the Java Collections Framework,
including Vector, ArrayList, LinkedList, Stack, TreeMap, and HashMap. In this
section, we’ll take a look at Presentation views for several of these.

In the Browse tab, locate CollectionsExample.java, and double-click on it to
open it in the CSD window. Compile the program by clicking the green plus .
Set a breakpoint on any executable statement in the program. Now start the
debugger by clicking . Figure 10-7 shows the program stopped at a
breakpoint on the line in the inner loop that adds an element to myVector.
Notice that prior to the breakpoint, the variables myVector, myArrayList,
myLinkedList, myStack, myHashMap, and myTreeMap were declared and their
respective instances were created. With the program stopped at the breakpoint,
we can open viewers for each of the variables listed in the Debug tab.

Figure 10-7. CollectionsExample.java stopped at a breakpoint

10-9

Viewers (1.8.7) 9/2/2009

Figure 10-8 shows a viewer set to Presentation - Structure Identifier view
opened on myLinkedList after three elements have been added to it. Notice that
myLinkedList is a doubly-linked list with a header node. Width has been set to
8.0, and the element mouse is selected in the main view and shown in the
subview in Presentation view for the String Class. In this view, the m in mouse
is selected, and the character subview is shown set to the Basic view.

Figure 10-8. View of myLinkedList after three elements have been added

10-10

Viewers (1.8.7) 9/2/2009

Figure 10-9 shows a viewer set to Presentation - Structure Identifier view
opened on the variable myHashMap after three elements have been added. A
hashmap entry is selected, as indicated by the red border, and its Basic view is
shown in the subview with fields: key, value, hash, and next. As elements are
added to the HashMap, it is useful to use the Scale slider to zoom in and out on
the structure so that the “topology” of its elements can be seen.

Figure 10-9. View of myHashMap after three
elements have been added

10-11

Viewers (1.8.7) 9/2/2009

Figure 10-10 shows a viewer opened on myTreeMap after seven elements have
been added. TreeMap uses a Red-Black tree as its underlying storage structure,
and the default Presentation – Structure Identifier view indicates the red and
black nodes by coloring their borders light red and dark gray respectively. As
you step through the program and put items in the TreeMap, you should see the
red-black node rotations.

 In the figure, width has been set to 11.0, and in the red node containing “ant”,
the key field “ant” has been selected as indicated by an additional dark red
border. The String subview for ant is set to Presentation.

Figure 10-10. Presentation - Structure Identifier View of
myTreeMap with six elements

10-12

Viewers (1.8.7) 9/2/2009

Figure 10-11 shows a second viewer opened on myTreeMap with the view set to
Key/Value. The node for dog has been selected and two subviews have been
opened: one for the key and one for the value. In the figure below, the node with
key = “dog” and value = 2 has been selected.

In the left subview for String key, the view is set to Presentation as it was in the
previous figure. In the right subview, we have the Basic view of value which is
an object; specifically, it is an instance of java.lang.Integer, the wrapper class for
the Java primitive int.

Figure 10-11. Key/Value view of myTreeMap with seven elements

10-13

Viewers (1.8.7) 9/2/2009

10-14

10.6 Presentation Views for Code Understanding
Now we turn our attention to the details of the Presentation - Structure Identifier
viewer when it is used in conjunction with user classes for data structures
including most textbook examples. When this viewer is opened on an object, it
automatically attempts to determine if the object represents a common data
structure; if so, it verifies relevant links, displays nodes referenced by local
variables, and provides animation for the insertion and deletion of nodes. The
structure mappings that are determined by the viewer and the fields that are
displayed in the view can be configured by the user while the viewer is open on
the object.

Custom Presentation views (as opposed to the more general Presentation -
Structure Identifier view) are available for many of the Java Collections
Framework classes. Each of these views is generated by a non-verifying viewer
implemented specifically for the respective class. Because these viewers
assume that the JDK Java code for each data structure is correct, no verification
is done. As a result, these viewers can efficiently display data structures with
large numbers of elements. In contrast, the Presentation – Structure Identifier
view is less efficient but provides link verification and animation. It is
extremely useful when viewing a data structure with a relatively small number
of elements (e.g., less than 100) while attempting to understand the source code
itself. For example, when stepping through the insert method, this view shows
links being set for a local node instance and then shows the node sliding up into
the data structure. Seeing a link set as a result of a particular assignment
statement helps the user make a mental connection between the source code and
the actual behavior of the program during execution.

When a viewer is opened on an object, the Structure Identifier attempts to
determine if the underlying structure of the object is a linked list, binary tree, or
array wrapper (lists, stacks, queues, etc.). The object’s fields and methods are
examined for references to nodes that themselves reference the same type of
node. If a positive identification is made, the data structure is displayed;
otherwise, the user is given the opportunity to configure the view. The
Presentation – Structure Identifier view works for all of the Collections
Framework Classes used in the examples above, and it should work for most
user classes that represent data structures. During the generation of the
visualization, relevant links are verified and then displayed in a specific color to
denote the following: black – part of structure; green – local reference or not
part of the formal data structure; red – in transition or probably incorrect for
specified structure. The most distinguishing aspect of this presentation view is
the animation of node insertions and deletions. The control buttons and sliders

Viewers (1.8.7) 9/2/2009

on the viewer are similar to ones discussed above with the addition of a slider to
set the animation time.

Now let’s look at several example programs that use non-JDK data structures
similar to what you might find in a textbook. In the Tutorials\ViewerExamples
directory, we have LinkedListExample.java, DoublyLinkedListExample.java,
and BinaryTreeExample. The actual data structure classes used by these
examples are in the folder jgraspvex, which is a Java package containing
LinkedList.java, DoublyLinkedList.java, BinaryTree.java, LinkedNode.java,
and BinaryTreeNode.java.

10.6.1 LinkedListExample.java

In the Browse tab, navigate to the ViewerExamples directory and open the file
LinkedListExample.java by double-clicking on it. Generate the CSD, and then
compile the program by clicking on the toolbar. Set a breakpoint in the
left margin on a line inside the inner loop (e.g., on the line where list is declared
and a new LinkedList object is created). Now click the Debug button on the
toolbar. Figure 10-11 shows the program after it has stopped at the breakpoint
prior to creating an instance of LinkedList called list. Click Step on the
controls at the top of the Debug tab. When list is created, you should see it in
the Variables tab of the Debug window.

Figure 10-11. LinkedListExample.java stopped at a breakpoint

10-15

Viewers (1.8.7) 9/2/2009

Now open a viewer on list by selecting and dragging list from the Debug
window. Figure 10-12 shows a view of list before any elements have been
added. Add two elements to the linked list by stepping () through the inner
loop twice. Figure 10-13 shows a view of list after two elements have been
added. Note that the viewer is set to Presentation – Structure Identifier view,
which is the default. Basic and Monitor views are also available. The latter
view displays any Java owning or waiting threads for the monitor associated
with the object. This is used for multi-threading and synchronization. After
experimenting with the other views, change the View to Presentation - Structure
Identifier by selecting this on the drop down list as shown in Figure 10-13.

Figure 10-12. View of list with no
elementsadded

Figure 10-13. View of list with two elements

10-16

Viewers (1.8.7) 9/2/2009

Now you are ready to see the animation of a local node being added to the
linked list. You need to step into the add() method by clicking the Step in
button at the top of the debug tab. Each time you click , the program will
either step into the method indicated or step to the next statement if there is no
method call in the statement. Figure 10-14 shows list after node.next for the
new node has been set to head. Figure 10-15a shows list after head has been set
to node, and the new node begins to move into list. Figure 10-15b shows list
after the new node has been inserted. As you repeatedly step in, you should see
added and inserted nodes “slide” up into list and removed nodes slide out of list.
Note that the Call Stack in the Debug tab indicates the methods into which you
have stepped.

Figure 10-14. Node about to be added to list

10-17

Viewers (1.8.7) 9/2/2009

Figure 10-15a. As node is it is being added to list

Figure 10-15b. After node has been added to list

10-18

Viewers (1.8.7) 9/2/2009

10.6.2 BinaryTreeExample.java

Now let’s take a look at an example of another common data structure, the
binary tree. In the Browse tab, navigate to the ViewerExamples directory and
open the file BinaryTreeExample.java by double-clicking on it. After compiling
it, set a breakpoint in the left margin on a line inside the inner loop (e.g., on
the line where bt.add(..) is called). Now click the Debug button on the
toolbar. Figure 10-16 shows the program after it has stopped at the breakpoint
prior to adding any nodes to bt. Now open a viewer on bt by selecting and
dragging it from the Debug window. The Structure Identifier automatically
determines that the object is a binary tree and provides an appropriate view for
bt. Add two elements to bt by stepping () through the inner loop twice.

Figure 10-16. BinaryTreeExample.java stopped at a breakpoint

10-19

Viewers (1.8.7) 9/2/2009

Now you are ready to see the animation of a local node being added to the
binary tree. You need to step into the add method by clicking the Step in button

 at the top of the debug tab. Each time you click , the program will either
step into the method indicated or step to the next statement if there is no method
call in the statement. The Call Stack in the Debug tab indicates the methods into
which you have stepped. Figure 10-17 shows bt after root has been passed into
the add() method as branch, and Figure 10-18 shows bt after branch.left has
been set to node. As you repeatedly step in, you should see added and inserted
nodes “slide” up into bt and removed nodes slide out of bt. Note that since bt is
a local variable declared in the main method, when you step in to a method as
we done in this example, bt is no longer in scope. This is indicated by the
message at the bottom of the viewer. Because bt is a reference variable, the
previous value still points to the instance of BinaryTree that we are viewing.

Figure 10-17. Binary tree example as node is
about to be added to bt

10-20

Viewers (1.8.7) 9/2/2009

Figure 10-18. Binary tree example after node is
added to bt

This is a good time to do some experimenting on your own with this example.
For example, click the Debug button to start the program. Click step ()
until bt is created, then open a viewer on it. Now, as you step () through the
code, try to understand exactly what is happening in the program with respect to
the diagram in the viewer.

Now repeat the process above, but this time click step in () repeatedly. The
viewer will show the relationship between the data structure and local nodes in
its methods, and the animation should help you understand the code in these
methods.

10-21

Viewers (1.8.7) 9/2/2009

10.6.3 Configuring Views generated by the Structure Identifier

The Structure Identifier uses a set of heuristics in its attempt to determine if the
object for which a view is being opened is a linked list, binary tree, etc. Since
the view it provides is only a best guess, some additional configuration may be
needed in order to attain an appropriate Presentation view. Consider the viewer
in Figure 10-19. Figure 10-20 shows the result of (1) clicking the Configure
button (located to the left of the Width slider). Figure 10-21 shows the dialog
after modifying Value Expression by inserting "Value: " + (don’t forget to
enter the plus sign). Figure 10-22 shows the binary tree after clicking OK or
Apply on the Configure dialog. Note that Width has been changed to 8.0 to
accommodate the new node value.

Figure 10-19. Binary tree example

10-22

Viewers (1.8.7) 9/2/2009

Figure 10-20. Configuration dialog ()

Figure 10-21. Configuration dialog with Value
Expression modified

10-23

Viewers (1.8.7) 9/2/2009

Figure 10-22. Binary tree example after OK (or
Apply) on Configuration dialog

The Structure tab in the Configuration dialog includes: (1) Structure with a drop
down list for the possible structure mappings identified by the Structure
Identifier, (2) Structure Type with a drop down list containing Binary Tree,
Linked List, Hashtable, and Array Wrapper, and (3) entries describing the
structure itself. Currently, modifications made via the Configuration dialog are
not saved from one jGRASP session to another.

Continuing with the binary tree example, Figure 10-23 shows the Structure Type
for bt after it has been changed from Binary Tree to Linked List. Figure 10-24
shows the data structure after the configuration change has been applied (i.e.,
OK or Apply clicked). Notice that transparent red arrows represent links that
are not correct for a linked list.

The Structure tab is intended primarily for advanced users, and structure
changes are rarely needed to view most common data structures. After
experimenting with these settings, be sure to set the configuration back to its
defaults by clicking the Reset button, then Apply or OK.

10-24

Viewers (1.8.7) 9/2/2009

The Fields Display tab provides some options with respect to which of the
object’s fields should be displayed. This is the most common configuration
operation to perform on the view provided by the Structure Identifier. For some
data structures one (or more) of the fields is treated as a formal part of the
conceptual diagram itself. For example, the binary tree example has two fields,
size and root, and the viewer treats root as part of the diagram, but considers size
to be optional (however, it is included by default). Only the fields that are not
part of the diagram are listed on the Fields Display tab.

Figure 10-23. Changing structure type of bt
from Binary Tree to Linked List

Figure 10-24. bt shown as a linked list with red
translucent links indicating it is not a linked list

10-25

Viewers (1.8.7) 9/2/2009

10.7 Using the Viewers from the Workbench

Thus far, we have concentrated on opening viewers from the Debug tab while a
program is being run in debug mode. In this section, we’ll see how to use
viewers from the Workbench tab. Objects can be created and placed on the
workbench from the CSD window, the UML window, and/or by entering
appropriate source code in the Interactions tab. After an object is placed on the
workbench tab, a viewer can be opened by selecting the object and dragging it
from the Workbench tab.

Let’s begin by opening the project for the BinaryTreeExample we used in the
previous section. In the Browse tab, navigate to the ViewerExamples directory
and open the file BinaryTreeExample_Project.gpj by double-clicking on it.
After this file is opened, you should see the project listed in the “Open Projects”
section of the Browse tab. If the UML diagram is not displayed, double-click on
the UML diagram symbol (<UML>) which should be the first entry under
the project in the Browse tab. Figure 10-25 shows the UML diagram with three
classes: BinaryTreeExample, BinaryTree, and BinaryTreeNode. Notice that the
labels for BinaryTree and and BinaryTreeNode indicate they are contained in
package jgraspvex (see the jgraspvex folder in the current directory).

If you are still running a program in jGRASP (e.g., in debug mode from the
previous section), you should end it before you start the workbench.

Figure 10-25. UML Class Diagram for BinaryTreeExample_Project

10-26

Viewers (1.8.7) 9/2/2009

For more information on creating projects and generating UML class diagrams,
see Getting Started with Objects, Projects, and/or UML Class Diagrams.

Now we are ready to create an instance of BinaryTree. Right-click on the
BinaryTree class in the UML diagram as shown in Figure 10-26, then select the
second entry on the pop-up list, Create New Instance. This brings up the Create
New Instance dialog which lists the available constructors for BinaryTree.
Figure 10-27 indicates that we are about to create an instance called
“jgraspvex_BinaryTree_1” using BinaryTree’s only constructor. When the
Create button is clicked, the new object is placed on the workbench and listed in
the Workbench tab as shown in Figure 10-28. Now let’s open a viewer, as
we’ve done before, by selecting and dragging the object from the Workbench
tab. Figure 10-29 shows the BinaryTree object in the viewer with size 0. To
add elements to the instance, we need to invoke its public add() method.
Clicking on the Invoke Method button located in the upper right corner of the
viewer brings up the dialog shown in Figure 10-30. To make the dialog stay up
so that we can add multiple objects, click on the stick pin in the upper left
corner.

Figure 10-26. BinaryTree class selected to create new instance for
workbench

10-27

Viewers (1.8.7) 9/2/2009

Figure 10-27. Create New Instance
dialog for the BinaryTree class

Figure 10-28. BinaryTree object on the workbench (unfolded to show
fields)

10-28

Viewers (1.8.7) 9/2/2009

Figure 10-29. Viewer opened on the object
jgraspvex_BinaryTree_1 with 0 elements

Figure 10-30. Invoke Method dialog for
jgraspvex_BinaryTree_1 to add element 10

10-29

Viewers (1.8.7) 9/2/2009

10-30

Let’s add the value 10 to the binary tree by selecting the public add() method. If
you are using Java 1.5 or higher, you can enter 10 (without quotes) in the
parameter box labeled java.lang.Comparable value as shown in Figure 10-30.
Java’s autoboxing feature will convert this to an Integer object. Otherwise enter
“10” (with quotes) to make the value a string. Clicking the Invoke button will
cause the object to be inserted into the binary tree. Notice that the Result dialog
pops up indicating the invocation was successful.

To prevent the Result dialog from popping up after each invocation,
you can check the Don’t Show Result Dialog option located above the
Invoke button.

Now let’s add each of the following elements using the same steps we used
above to add the element 10 to the tree: 8, 12, 6, 9

As you add each element, you should see the tree adjust to accept the new node.
You can increase or decrease the animation time using the slider provided on the
viewer. Decreasing the animation time speeds up the movement of the nodes.
After adding these elements, your viewer should look similar to the one in
Figure 10-31 with five elements.

Now let’s remove the node containing 8. On the Invoke Method dialog for bt,
select the public remove() method and enter 8 as the parameter then click the
Invoke button (see Figure 10-32). The node with value 8 is removed and the tree
is adjusted accordingly. Now try adding 8 back to the tree and notice where it
ends up.

In workbench mode, local nodes are not available, as indicated by the
message in the viewer. However, if you set a breakpoint in the add()
method and then invoke it, the desktop switches to debug mode and
allows you to step through the method, at which time local nodes are
displayed as appropriate. As soon as you step to the end of the method,
the desktop returns to workbench mode. If you do set a breakpoint in a
method that you are invoking from the workbench, remember to remove
the breakpoint when you are done. Otherwise, each time you invoke
the method in the future, you will have to step through it in debug
mode.

In the example above, we created the instance of BinaryTree by right-clicking
on a class in the UML diagram. This approach assumes that the classes are in a
jGRASP project and that a UML class diagram has been generated for it. Since
most users spend much of their time reading and writing code in the CSD
window, jGRASP provides a convenient way to create instances of a class for
the workbench from the CSD window. The section concludes with an example
using this method.

Viewers (1.8.7) 9/2/2009

Figure 10-31. Viewer opened on the object
jgraspvex_BinaryTree_1 with 5 elements

Figure 10-32. Removing element 8

10-31

Viewers (1.8.7) 9/2/2009

In the Browse tab, navigate to the ViewerExamples directory if you are not
already there. In this directory, you should see the directory graspvex which
contains the data structure classes for this tutorial. Find BinaryTree.java and
double-click on it to open it in a CSD window. Figure 10-33 indicates the
location of the Create Instance b ton on the CSD window tool bar. Clicking
this opens the Create New Instance dialog which lists the available constructors
for BinaryTree as shown above in Figure 10-27.

ut

You can find also create an instance from the menu by clicking Build > Java
Workbench > Create New Instance. This is illustrated in Figure 10-34.

Regardless of the way you choose to create instances, the workbench provides a
convenient way to test a class and its methods without the necessity of a driver
program. When a viewer is opened for an instance of a data structure on the
workbench, the opportunity for understanding the software is even greater.

10-32

Figure 10-33. CSD window with BinaryTree.java

Create Instance button

Viewers (1.8.7) 9/2/2009

Figure 10-34. Using the Build menu to an create instance

10.8 Summary of Views
During execution, Java programs usually create a variety of objects from both
user and library classes. Since these objects only exist during execution, being
able to visualize them in a meaningful way can be an important element of
program comprehension. Although this can be done mentally for simple
objects, most programmers can benefit from seeing visual representations of
complex objects while the program is running. The purpose of a viewer is to
provide one or more views of a particular instance of an object during execution,
and multiple viewers can be opened on the same object to observe different
structural properties of the object. These viewers are tightly integrated with the
workbench and debugger and can be opened for any primitive, object, or field of
an object in the Debug or Workbench tabs. Below is a summary of current
views.

General Description of Views

Basic – An object can be unfolded to reveal its fields; if a field is an object, it
too can be unfolded to see its fields. This view is used in the debug and
workbench tabs, and it is available for all classes.

10-33

Viewers (1.8.7) 9/2/2009

10-34

Detail – For integer (byte, short, int, long) and character (char) types, the value
in decimal, hexadecimal, octal, and binary is displayed. For floating point
(float, double), the value is represented using the IEEE standard for mantissa
and exponent. The detail view also works for each associated wrapper class.

Presentation – A conceptual view similar to what one might find in a textbook
is provided by a viewer written for a specific class; typically handles very large
number of elements efficiently. Currently supported classes include:

 array, String, ArrayList, Vector, Stack, LinkedList

Presentation - Structure Identifier – A conceptual view is provided when a
structure is automatically detected; typically handles a moderate number of
elements efficiently. This view is listed on the View drop down list for many
objects and if selected, the user has the opportunity to configure the viewer for a
linked list or binary tree even if neither was automatically identified. The
following structures are currently supported in jGRASP 1.8.7:

linked lists, binary trees (including binary heap, red black trees, AVL
trees), hashtables, and array wrappers (lists, stacks, queues, etc.)

Viewers (1.8.7) 9/2/2009

10.9 Exercises

(1) Open CollectionsExample.java, set an appropriate breakpoint, and run it in
debug mode. After the program stops at the breakpoint, open a viewer on
instances of one or more of the following, then step through the program:

a. array

b. ArrayList

c. LinkedList

d. TreeMap

e. HashMap

(2) Continuing with the program from above, let’s use the Auto-Step feature of
the jGRASP Debugger. With the program stopped at a breakpoint and one
or more viewers open, select Auto Step on the debug control panel and
click the Step . You can control the speed of the steps with the slider bar
beneath the step controls.

(3) Open QueueExample.java, set an appropriate breakpoint, and run it in
debug mode. After the program stops the breakpoint, open a viewer on

queue. Select Auto Step on the debug control panel. Now click the Step
button . You can control the speed of the steps with the slider bar
beneath the step controls on the debug control panel. You can control the
speed of the animation with the slider bar on the viewer. By watching the
queue in the viewer as the program executes, what can you learn about the
implementation of the queue?

(4) Open LinkedListExample.java, set an appropriate breakpoint, and run it in
debug mode. After the program stops at the breakpoint, open a viewer on

list. Select Auto Step on the debug control panel. Now click the Step in
button .

(5) Open BinaryTreeExample.java and repeat the task described in (4).

(6) Although float and double are primitive data types rather than data
structures, the IEEE standard representation for floating point types is quite
interesting.

Create floating point variable in your program by adding the statement:

 double myDouble = 4096.0;

After compiling the program, set an appropriate breakpoint, and run the
program in Debug mode. Open a viewer on myDouble and set the view to

10-35

Viewers (1.8.7) 9/2/2009

10-36

esentation used for floating point numbers and how these are

n the Debug tab
and selecting “Change Value” from the list of options.

Notes

Detail. The Detail view for float and double values shows the exponent and
mantissa repr
calculated.

Change the value of myDouble by right-clicking on it i

	10 Viewers for Data Structures
	10.1 Introduction
	10.2 Opening Viewers
	10.3 Setting the View Options
	10.4 Selecting Among Views
	10.5 Presentation Views for LinkedList, HashMap, and TreeMap
	10.6 Presentation Views for Code Understanding
	10.6.1 LinkedListExample.java
	10.6.2 BinaryTreeExample.java
	10.6.3 Configuring Views generated by the Structure Identifier

	10.7 Using the Viewers from the Workbench
	10.8 Summary of Views
	10.9 Exercises

