
Using the Viewer Canvas (2.0.0) 6/26/2014

12-1

12 Using the Viewer Canvas
In this tutorial we introduce the viewer canvas, which allows you to create
dynamic visualizations of your programs using multiple viewers. The canvas is
tightly integrated with the debugger, workbench, and interactions. It provides a
conceptual visualization similar to what one might find in a textbook but with
the added benefit of being dynamically updated as you step through the
program. This allows you to explore the inner workings of your program
regardless of its apparent complexity. The visualizations provided by the canvas
are useful for general program understanding as well as traditional debugging.

Objectives – When you have completed this tutorial, you should be able to
create a canvas by dragging and dropping objects and primitives displayed in the
Debug or Workbench tabs, select among viewers for each item on the canvas,
set individual viewer options, save the canvas, and run your program in the
viewer canvas. The details of these objectives are captured in the hyperlinked
topics listed below.

12.1 Introduction
12.2 Creating a Simple Canvas – AcmeDinnerTheater Program

12.2.1 Running in a New Canvas and Adding Variables
12.2.2 Running in a Saved Canvas

12.3 Viewing an Array on the Canvas – BinarySearchExample
12.3.1 Understanding the BinarySearch method
12.3.2 Compiling and Running the BinarySearchExample
12.3.3 Controlling the Viewer Canvas

12.4 Creating a Canvas with Array Viewer – BinarySearchExample
12.4.1 Opening a Second Canvas Window
12.4.2 Saving the Canvas File
12.4.3 Adding Variables to the New Canvas
12.4.4 Playing the New Canvas
12.4.5 Adding Index Expressions to the Array Viewer
12.4.6 Changing Rotation, Width, and Scale in the Presentation Viewers
12.4.7 Experimenting with Different Array Viewers

12.5 Sorting on the Canvas – NumberSelectionSort
12.5.1 Reviewing the Source Code
12.5.2 Running the NumberSelectionSort in the Canvas

12.6 Wrapping Up – Notes on Using the Canvas
12.7 Looking Ahead to Data Structures – Exercises

Using the Viewer Canvas (2.0.0) 6/26/2014

12-2

12.1 Introduction

 After you successfully Compile your program, you have
three ways to run your program in jGRASP: Run , Debug , and Run in
Viewer Canvas . In this tutorial, we focus on Run in Viewer Canvas ,
which opens a canvas window on a new or existing canvas file. When any
primitive, object, or field of an object in the Debug or Workbench tabs is
dragged onto the canvas, a viewer window is opened using a viewer associated
with the variable type. Below is a summary of the basic steps for creating a
canvas for your program. These will be explained in detail in the sections below
using example programs.

General steps for creating and using a new viewer canvas with your compiled
program:

(1) On the desktop toolbar, click the Run in Canvas button .
(2) Click the Step button on the canvas window or debug tab until you

see variables of interest in the Variables tab.
(3) Drag one or more variables onto the canvas; a default viewer should

open for each variable.
(4) Save the canvas . [NOTE: To associate the canvas file with this

program, the name must begin with the Java file name that contains
main or with the name of the jGRASP project (e.g., program
MyProgram.java has canvas MyProgram.jgrasp_canvas.xml). This
naming convention enables “Run in Canvas” to use the appropriate
canvas file when launching the program.]

(5) Step through the program and observe the object in the viewer.
(6) On the canvas, click the Play button (auto step-in) on the canvas to

start the visualization. Use the Pause button and Stop button as
needed. To regulate the speed of the program, decrease or increase the
delay between steps using the Delay slider.

You can also use the canvas via the Debug or Workbench tabs by clicking the
Open New Viewer Canvas button on the debug or workbench toolbar and
then dragging one or more variables onto the canvas. Changes to these variables
resulting from statements executing in the Interactions tab, from stepping the
debugger, and/or from executing methods via the Invoke Method dialog will be
reflected on the canvas.

We’ll use three example programs (AcmeDinnerTheater, BinarySearchExample,
NumberSelectionSortExample) to illustrate the basic steps above and to
demonstrate the overall utility of the canvas. Exercises will then guide you
through several data structure examples.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-3

12.2 Creating a Simple Canvas – AcmeDinnerTheater Program

[NOTE: If you have not already done so, you should copy the jGRASP
examples to a personal folder as follows. Start jGRASP, then on the main menu
click Tools > Copy Example Files. In the dialog, select a folder as appropriate
and click Choose to save the jGRASP examples. This will open the Browse tab
on the jgrasp_examples folder containing the copied files.]

Let’s begin by opening one of the programs in the examples folder that comes
with the jGRASP installation. After you have started jGRASP, use the Browse
tab to navigate to the jgrasp_examples\Tutorials folder. If you have been
working with the examples in the “Hello” or “PersonalLibrary” folders, you’ll
need to go up one level in the Browse tab by clicking the up arrow. In the
Tutorials folder, you should see a folder called CanvasExamples. Double-click
on the folder to open it then locate the file AcmeDinnerTheater.java. Open this
file by double-clicking the file name (Figure 12-1).

Figure 12-1. AcmeDinnerTheater.java

Using the Viewer Canvas (2.0.0) 6/26/2014

12-4

A quick review of the program shows that it creates a Scanner object and then
reads in a String for the group name, an int for number in the group, and a
double for the cost per person.

12.2.1 Running in a New Canvas and Adding Variables

Let’s compile the program by clicking the green plus . The Compile
Messages tab pane should indicate that the Java compiler (javac) was launched
and that the operation was completed. If no compile errors are indicated then
compilation was successful and you are ready to run the program.

Click the Run button to run the program. This program queries the user for
each of the three input values: group name, number in group, and cost per
person. For example, if you entered Pat Brown, 6, and 49.99, after the program
ends, you should see the following in the Run I/O tab pane.

Now we are ready to run the program in the viewer canvas. This will allow us
to examine some of the details of the program while it is running. Click the Run
in Viewer Canvas button which is located on the desktop toolbar. This runs
the program in debug mode and stops at the first executable statement. Since
this program does not yet have a canvas file associated with it, an empty canvas
window is opened (Figure 12-2).

Figure 12-2. Empty canvas window

Using the Viewer Canvas (2.0.0) 6/26/2014

12-5

As the message in the canvas window indicates, we now need to click the Step
button on the canvas window or debug tab until we see variables of interest
in the Variables tab. In the CSD window, you should see that the program is
stopped on the line that creates the Scanner object. After you click the Step
button, a new Scanner object called scan should appear in the Variables tab of
the Debug pane.

Using the mouse, drag the variable scan onto the canvas window and a
Presentation viewer is opened for scan as shown below. Note that the Scanner
buffer is currently empty (i.e., the pointer is at the 0 position).

Figure 12-3. Canvas window after the variable scan has been added

With the viewer selected, as it is when initially dragged onto the canvas, you can
move it around the canvas by moving the mouse to the top border of the viewer
frame and then dragging the viewer. You can make a copy of the viewer by
dragging the blue square on the left end of the top border. To remove a
viewer from the canvas, click the Menu button on the right end of the top
border, and select Remove. To deselect the viewer, simply click elsewhere in
the canvas window and the viewer frame will be hidden.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-6

Now let’s continue stepping in the program to enter the values for name,
numOfPersons, and costPerPerson. After you step through a statement
requesting input, “Status: waiting for input” will be indicated at the bottom of
the canvas and jGRASP desktop. You need to enter the input in the Run I/O tab
pane as you did earlier when you ran the program in the traditional way. If
you attempt to step without entering the requested input, jGRASP will pop up an
error dialog (shown below) indicating that you “can’t step”. If this happens,
click the OK button on the dialog and then enter the input in the Run I/O tab.

Figure 12-4. “Can’t step” error when
waiting for input

After entering the input and pressing the Enter key, you should see the text that
you entered in the Scanner object on the canvas. If you select the Scanner
viewer, you can scroll it to see all of the values entered thus far. Notice the ‘\r’
and ‘\n’ characters that follow each value you entered. These are the “return”
and “line feed” control characters that resulted from pressing the Enter key. The
line terminators on non-Windows systems may be different from \r\n. Since we
are scanning an entire line using the nextLine() method, the token marker is
pointing to the character after the ‘\r’ and ‘\n’ characters in the Scanner buffer.

Continue stepping and entering input until you get to the last print statement
in the program. You should now see all of the variables in the Debug tab pane.

Now drag all of the remaining variables (name, numOfPersons, costPerPerson,
totalCost) onto the canvas. As each variable is added to the canvas, the default
viewer for its type is opened. For name, which is a String, the Formatted viewer
is opened. For the other variables, which are of type int and double, the Basic
viewer is opened. The Basic viewer displays the result of String.valueOf() for
primitives.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-7

Now that all of the variables are on the canvas, this would be a good time to
make any adjustments with respect to a variable’s specific viewer or its position
on the canvas. Figure 12-5 shows one way to arrange the four variables using
their default viewers.

Figure 12-5. Canvas after all variable have been added

You can experiment with different viewers for each of the values. For example,
instead of the Formatted viewer for name, you may want to use the Presentation
String viewer. To change the viewer for name, select the viewer window, click
the Menu button in the upper right corner of the viewer frame, select Viewers,
then select Presentation String as shown below in Figure 12-6.

Figure 12-6. Changing the viewer for name to Presentation String

Using the Viewer Canvas (2.0.0) 6/26/2014

12-8

When the viewer for name is changed from the Formatted viewer to the String
Presentation viewer, you should see:

change to

After changing the viewer, if the label “name” is not fully visible on the canvas,
you may need to reposition the viewer window on the canvas by selecting it and
dragging the top border.

12.2.2 Running in a Saved Canvas

We are now ready to save the canvas by clicking the Save button on the
canvas toolbar. This saves the file as AcmeDinnerTheater.jgrasp_canvas.xml
which you should see at the top of the canvas window. If you attempt to close a
canvas window or exit jGRASP before saving the canvas after any changes have
been made, a warning dialog will pop up and allow you to save and close the
file, discard the edits, or cancel.

Continue stepping through the program until you reach the end of the main
method. You should see the message “Status: run in canvas ended” at the
bottom of the canvas window.

 Now that we have a canvas file for the program, let’s run the
program again in the canvas. Click the Run in Viewer Canvas button on the
canvas window toolbar. As before, this runs the program in debug mode and
stops at the first executable statement. Now we see “Status: running user
program in canvas” at bottom of the canvas (Figure 12-7).

Figure 12-7. Running in canvas, stopped at first executable statement

Using the Viewer Canvas (2.0.0) 6/26/2014

12-9

 Previously, we used the Step button to step through the program.
This time let’s use the Play button since we have already created a canvas for
our program. The Play button turns on Auto-Step in the debugger and then
begins stepping. This means we do not have to click the Step button repeatedly.
After clicking the Play button, each viewer on the canvas will become active
when its associated variable is first assigned a value.

After you have entered the last value for costPerPerson, you should see the
message “Status: run in canvas ended” at the bottom of the canvas window as
shown in Figure 12-8.

Figure 12-8. Canvas after all input has been entered and run has ended

As a final exercise before we leave this example, let’s close the canvas window.
Now click the Run in Viewer Canvas button on the desktop toolbar. This
opens the canvas window associated with the AcmeDinnerTheater.java and
stops at the first executable statement. After clicking the Play button , the
program begins auto-stepping, requesting input, and proceeding through the
program as it did above.

This completes our first example. While this was a simple example, it served to
illustrate the steps of creating a canvas by dragging variables onto the canvas
and then stepping or playing the program. The next section will introduce
additional features of the viewers and viewer canvas.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-10

12.3 Viewing an Array on the Canvas – BinarySearchExample

Now let’s look at a program that includes an array. Since our canvas for this
program will be slightly more involved than the one for the AcmeDinnerTheater
program, it will allow us to explore several important features that we didn’t
need in the first example. We’ll begin by opening the BinarySearchExample
program and discussing the details of the main method and binarySearch
method. After compiling the program, we’ll run it in the traditional way, and
then we’ll run it in an existing canvas. After this, we’ll explore different ways
to control the canvas and gain some experience using the canvas.

In the ViewerExamples folder, locate BinarySearchExample.java and double-
click on it to open it in a CSD window. The BinarySearchExample class
contains two static methods: main and binarySearch. Figure 12-9 shows the
main method which creates and initializes int array ia with the values 12, 34, 56,
65, 73, 81, and 97. Then in successive print statements, the main method calls
the binarySearch method to find the location or index of various values in the
array. For example, in the first print statement, the binarySearch method is
called to find the index of value 12 in array ia. Since 12 is the first value in the
array, we expect our program to print the following.

Index of 12 is: 0

Figure 12-9. The main method in BinarySearchExample program

Using the Viewer Canvas (2.0.0) 6/26/2014

12-11

12.3.1 Understanding the BinarySearch method

Now let’s take a look at the details of our binarySearch method shown in Figure
12-10, which takes two parameters, int key and int[] intArray. It searches
intArray for the value specified by key and returns the index of the value if
found or -1 if not found. Note that a linear search works with an array of
elements in an arbitrary order, whereas a binary search requires that the
elements in the array be ordered or sorted. For a linear search, we would begin
searching at the first location and continue searching until the key element is
found or the end of the array is reached. However, the strategy in our binary
search is to set low, mid, and high to the first index, middle index, and last index
of the array respectively, and then compare the key with the value at mid in the
array. If key is less than the value at mid, we know the key must be in the first
half of the array so we can disregard the second half by setting high to mid – 1.
If key is greater than the value at mid, we know the key must be in the second
half of the array so we can disregard the first half by setting low to mid + 1. If
the key matches the value at mid, we’re done. We continue this process until key
is found or until low is greater than high. If key matches the value at mid, then
mid is returned; otherwise, -1 is returned to indicate that the value was not
found.

Figure 12-10. The static binarySearch method

Using the Viewer Canvas (2.0.0) 6/26/2014

12-12

12.3.2 Compiling and Running the BinarySearchExample

Let’s compile the BinarySearchExample program by clicking the green plus .
The Compile Messages tab pane should indicate that the Java compiler (javac)
was launched and that the operation was completed. If no compile errors are
indicated then compilation was successful and you are ready to run the program.

Click the Run button to run the program and you should see the output below
for the array created in main with the following values: 12, 34, 56, 65, 73, 81,
and 97.

Now let’s run the program in the canvas to see a visualization of exactly how the
binary search works. We’ll begin by using the canvas file that was provided
with the program (BinarySearchExample.jgrasp_canvas.xml). Click the Run in
Viewer Canvas button on the desktop toolbar. This opens the canvas
window, launches the debugger, and stops at the first executable statement. In
the canvas, you should see the outlines of viewers for key, low, mid, high, and
intArray as shown in Figure 12-11.

Figure 12-11. The canvas with outlines of viewers to be opened

Using the Viewer Canvas (2.0.0) 6/26/2014

12-13

After clicking the Play button , the canvas begins auto-stepping through the
program, and when it steps-in at the first print statement where the binarySearch
method is called, each viewer on the canvas should become active as the
variables are created and initialized as shown in Figure 12-12. Depending on
the resolution of your screen, you may need to resize the canvas window and/or
the intArray viewer. This is done by selecting the item and then dragging a
corner or border.

Figure 12-12. The canvas paused after all variables have been initialized

12.3.3 Controlling the Viewer Canvas

 Any time you are playing the canvas, you can pause or stop
 the canvas as needed. After clicking the Pause button , you can resume by

clicking the Play button . If you click the Stop button , the program ends,
and you can click the Run in Viewer Canvas button and then the Play button

 to see the visualization again. These buttons, which provide a convenient
way to control the program when running in canvas, are essentially a
combination of debug control operations.

 Turn Auto Step on and Step In

 Turn Auto Step off

 Stop running and turn Auto Step off

 You can control the speed of the steps in the

Using the Viewer Canvas (2.0.0) 6/26/2014

12-14

program with the Delay slider. The default delay between each step is 0.5
seconds. While the program is running in the canvas, try moving the slider to
the left to speed up the program or to the right to slow it down.

Although the Play, Pause, and Stop buttons described above provide a general
level of control over the canvas, the Debug control buttons provide an additional
level of control. Often you will need this more fine-grained control while
running a program in the canvas. The Debug control buttons, which are
available on both the Debug tab pane and the Canvas window, are shown below.

These buttons can be used to control the stepping in the program when running
in the debugger.

 Step or execute the current statement.

 Step-in to a method, if any, in the current statement; otherwise Step.

 Step-out of a method, if any; otherwise run to completion.

 Run or Step to cursor.

 Suspend current thread (pause).

 Resume to next breakpoint

The Debug buttons below toggle the indicated setting on/off.

 Auto Step or step repeatedly when Step is clicked.

 Auto Resume or resume to next breakpoint repeatedly when Resume
is clicked.

 Use bytecode size steps. [Rarely used with canvas.]

 Suspend new threads. [Rarely used with canvas.]

You should experiment with the debug controls above. Since the binarySearch
method is quite short, let’s try the following. If the canvas is still running, end
the program by clicking the Stop button . Click the Run in Viewer Canvas
button and then click the Step-in button repeatedly until you have
stepped-in to the binarySearch method. Now with each click of the Step button

, try to relate the results of executing the statement to the program
visualization in the canvas. If you are not quite sure how the binarySearch
method works, this activity should help to clarify it. You may need to repeat
this process in order to fully understand the program. If you feel that you
already understand the binarySearch method, then you can use this activity to

Using the Viewer Canvas (2.0.0) 6/26/2014

12-15

confirm your understanding of details of the method. This is a form of visual
verification or interactive code inspection that can be used along with testing to
confirm that a program is working exactly as intended.

Let’s now set a breakpoint inside the binarySearch method on the line where the
if statement begins. To do this hover the mouse over the margin to the left of the
statement until you see the Breakpoint symbol , then left-click the mouse.
Alternatively, you can right-click on the line where the if statement begins and
select “Toggle Breakpoint” to set the breakpoint.

If the program is currently running, end the program by clicking the Stop button
. Now click the Run in Viewer Canvas button then click the Play button
. After the debugger stops at the first executable statement, click the Resume

button . This tells the debugger to execute all the steps in the program until it
reaches the breakpoint where it stops as shown in Figure 12-13.

Figure 12-13. Stopped at breakpoint in the binarySearch method

Note that even though we have been running this program in the canvas using
the debugger, we were not attempting to find bugs. Rather we were simply
making sure that we understand the program. However, if we were working on
a program that did have problems, using the canvas with the debug controls
described above is an excellent way to diagnose the problems and isolate the

Using the Viewer Canvas (2.0.0) 6/26/2014

12-16

bugs causing those problems. That is, you would set a breakpoint on or before
the statement where you suspect the problem, run the program in the canvas, and
then Resume to the breakpoint. You could also use the debugger directly by
clicking the Debug button , which would stop at the first breakpoint.

12.4 Creating a Canvas with Array Viewer – BinarySearchExample

Thus far, we have discussed how to run the BinarySearchExample program
using the canvas file (BinarySearchExample.jgrasp_canvas.xml) that was
provided with the program file in the ViewerExamples folder. Now comes the
fun part – we’ll create a second canvas that is similar to the first. That is, we
want to go through steps of how the first canvas file for BinarySearchExample
was created, and in the process we’ll create a second canvas file. For a complex
program, it is common to have multiple canvas files. This will allow you to gain
some important experience in configuring a viewer for an array.

12.4.1 Opening a Second Canvas Window

The easiest way to open a second canvas window for the BinarySearchExample
program is to do so while running the program in the first canvas window, so
let’s begin by clicking the Run in Viewer Canvas button . After the program
stops at the first executable statement, click File > New Canvas on the canvas
window menu. Alternatively, you can click the Open New Canvas button at
the top of the Debug tab pane and select the “[New] . . .” entry in the Choose
Canvas File dialog. Either of these options will open a second canvas window
that’s ready for you to drag variables onto it.

12.4.2 Saving the Canvas File

Before we add the variables to our new canvas, let’s briefly discuss the naming
convention required to associate the canvas file with the program. The default
names for two canvas files associated with our program are as follows:

BinarySearchExample.jgrasp_canvas.xml
 BinarySearchExample.2.jgrasp_canvas.xml

These file names begin with the name of the Java class, BinarySearchExample,
that contains the main method, and they end with jgrasp_canvas.xml which
identifies the file as a jGRASP canvas file. The “2” in the second file name,
which is used to make the name unique, can be any sequence of characters that
are legal in a file name. For example, the following file names can also be used
to associate the canvas file with the BinarySearchExample program.

BinarySearchExample.my_second_canvas.jgrasp_canvas.xml
 BinarySearchExample.temp.jgrasp_canvas.xml

Using the Viewer Canvas (2.0.0) 6/26/2014

12-17

Now let’s save our new canvas file by clicking the Save Canvas button on
the canvas toolbar. This opens the Save Canvas File As dialog with the file
name (BinarySearchExample.2.jgrasp_canvas.xml) already filled in as shown in
Figure 12-14. Click the Save button on the dialog to save the file and close the
dialog. BinarySearchExample.2.jgrasp_canvas.xml should be displayed at the
top of the canvas window.

Figure 12-14. Save canvas dialog with default file name

12.4.3 Adding Variables to the New Canvas

In order to add variables to the canvas, we need to be able to see them in the
Variables tab of the Debug tab pane. This means we need to let the program
step to the point where the variables of interest have been created. Since this is a
small program, simply click the Step-in button twice, which should step-in to
the binarySearch method. At this point you should be able to see the variables
key and intArray in the Debug tab pane. Drag key onto the new canvas and drop
it in the upper left of the canvas. This should open a viewer for key and show its
initial value of 12. Now de-select the viewer by clicking elsewhere in the
canvas and you should see the variable name key move from above the viewer to
the left of the viewer. Remember that you can always select this viewer and
reposition it on the canvas as needed. You should have the first canvas window
open so that you can use it as a guide for laying out the new canvas.

Now drag the variable intArray from the Debug tab and drop it onto the lower
left portion of the new canvas. We’ll come back to this viewer and configure it
later, but for now, let’s get the other variables onto the canvas.

To create the remaining variables of interest, click the Step button four times
(i.e., down to the if statement). Now drag the variables low, mid, and high onto
the canvas and position them approximately as they are in the first canvas. Your

Using the Viewer Canvas (2.0.0) 6/26/2014

12-18

new canvas should now have all of the variables of interest and appear similar to
the canvas in Figure 12-15. Note that the default Basic viewer is used for key,
low, mid, and high rather than the Presentation String viewer above. This would
be a good time to save the canvas again by clicking the Save Canvas button .

Figure 12-15. New canvas with variables added

12.4.4 Playing the New Canvas

Now click the Play button at the top of the new canvas window. The program
should begin stepping, and you should see both the original and new canvas
windows being updated. If you move the Delay slider on one of the canvas
windows, you should see the Delay slider on the other canvas window change as
well. Since both canvas windows are associated with the same program, when
you run the program in one canvas, it will also be running in the second canvas.
Normally, if you have two canvas windows open for the same program, you
would have different viewers and/or variables in the two canvas windows so that
you could observe different aspects of the program as it runs.

12.4.5 Adding Index Expressions to the Array Viewer

By now, you have no doubt observed that the array viewer in the new canvas
does not match the one in the original canvas. It does not display low, mid, and
high with the array indexes, and the array cells are not as wide as the array cells
in the original canvas window.

Let begin by adding the variables low, mid, and high as the index expressions for
the array. Click the Menu button in the upper right corner of the viewer frame
and select the Add Index Expressions option. In the dialog, shown below in
Figure 12-16, enter low#mid#high as index expressions and click OK to

Using the Viewer Canvas (2.0.0) 6/26/2014

12-19

close the dialog and apply the settings. When you play the canvas, you should
now be able to see the variables low, mid, and high move and update when they
are in scope.

Figure 12-16. Adding index expressions
for variables low, mid, and high

12.4.6 Changing Rotation, Width, and Scale in the Presentation Viewers

Select the viewer for intArray, to make the viewer frame visible and then click
the Menu button in the upper right corner of the viewer frame and select the
Viewer Settings option. This opens the Settings for intArray dialog as shown in
Figure 12-17.

Figure 12-17. Viewer Settings dialog for intArray

First let’s rotate the array viewer by clicking on the Rotate View button .
Successive clicks rotates the array viewer down (elements top to bottom), left
(elements right to left), up (elements bottom to top), and right (elements left to
right). The latter is the default rotation.

Now let’s make the array cells wider in the new canvas. Locate the Width slider
bar and increase the width of the array cells by dragging the slider to the right.
If the array contained String objects, this would allow you to adjust the width so
that more of each string is visible. Now drag the Scale slider to adjust the scale
of the entire array. Depending on the width and scale that you choose, you may
need to resize the viewer frame by dragging the right border of the viewer to the
right far enough to ensure that all the array elements are visible. Note that if you
have arrays in your programs with many elements you will likely need to scroll
the viewer rather than resize it. When a viewer is initially opened is set to Auto
Size. If you manually resize the viewer, you can reset it to Auto Size by
clicking the Menu button in the upper right corner of the viewer and then

Using the Viewer Canvas (2.0.0) 6/26/2014

12-20

selecting Auto Size. In Figure 12-18, intArray has been rotated the “Up”
position, which shows the elements from bottom to top, the width has been set to
9.2, and the scale has been set to 1.2 as indicated in the Viewer Settings dialog
(Figure 12-17). This rotation would be quite appropriate for an array that
represented a stack.

Figure 12-18. intArray after rotating
“Up” and adjusting Width and Scale
using the Viewer Settings dialog.

Now that you have “adjusted” the settings for the new viewer, close the Viewer
Settings dialog, and then click the Save Canvas button to save all the viewers
and settings for the canvas. Click the Run in Viewer Canvas button and then
the Play button to see the program visualizations in both canvas windows.
Your new canvas window should now be displaying the variables low, mid, and
high beneath the array indexes and they should be moving as their values
change.

Click the Stop button to end the program; then close both canvas windows.
Now click the Run in Viewer Canvas button on the desktop. This opens the
Choose Canvas dialog (Figure 12-19) which allows you to choose between the
two canvas files associated with the program. Double-clicking on one of the file
names or selecting a file name and clicking OK opens the canvas window for the
indicated file.

Figure 12-19. Choose Canvas File dialog

Using the Viewer Canvas (2.0.0) 6/26/2014

12-21

To open another canvas window for a program, find the canvas file in the
Browse tab and double-click on it. Alternatively, you can click the Open New
Canvas button at the top of the Debug tab pane. Then load the existing file
by clicking the Open File button on the canvas window toolbar (or by
clicking File > Open on the menu) and selecting the desired canvas file.

For most programs, you’ll find that a single canvas file will meet most of
your needs. However, multiple canvas windows can be extremely useful
when debugging complex programs since the windows all play at the same
time.

12.4.7 Experimenting with Different Array Viewers

Since we have intArray on the canvas, let’s take a look at the different array
viewers that are available. The first time you open a viewer on an array, the
default will the Presentation – Structure Identifier viewer. To change viewers,
click the Menu button in the upper right corner of the viewer and hover over
Viewers to see the list of available viewers. For intArray, the list of viewers
includes Array Elements, Bar Graph, Basic, Detail, Monitor Info, Presentation,
Presentation – Structure Identifier, and Presentation String.

 The “Presentation” viewer and the “Presentation – Structure Identifier” viewer
provide textbook-like visualizations of arrays and data structures. The primary
differences between these two viewers are as follows. The Presentation viewer
can handle large data sets efficiently because it expects no errors and processes
only the part of the structure that is visible on the screen. Therefore, it is
suitable for large arrays as well as the Java library classes in java.util package
such as ArrayList, LinkedList, TreeMap, and HashMap. In contrast, the
Presentation – Structure Identifier viewer includes significant error handling
capabilities and processes the entire structure. Thus, this viewer is suitable for
structures with a smaller number of elements (e.g., < 500) as well as for objects
of data structure classes that are under development since they may contain
errors.

Now let’s change the current viewer for intArray by clicking the Menu button
in the upper right corner of the viewer and hovering over Viewers to see the list
of available viewers. The result of selecting each of the Array Elements, Bar
Graph, Basic viewer, and String Presentation viewers for intArray are shown in
Figures 12-20, 12-21, 12-22, and 12-23 respectively.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-22

Figure 12-20. Array Elements
viewer for intArray

Figure 12-21. Bar Graph viewer
for intArray

Figure 12-22. Basic viewer for
intArray

Figure 12-23. Presentation
String viewer for intArray

Using the Viewer Canvas (2.0.0) 6/26/2014

12-23

12.5 Sorting on the Canvas – NumberSelectionSort

In this last example, we’ll use the canvas to visualize a simple selection sort
method for an array of double values. We’ll see how using two separate viewers
on the canvas for the same array can enhance the visualization.

12.5.1 Reviewing the Source Code

In the ViewerExamples folder, locate NumberSelectionSortExample.java and
double-click on it to open it a CSD window. The NumberSelectionSortExample
class contains two static methods: main and selectionSort. Figure 12-24 shows
the main method which creates double array ia of size 10, initializes it with 10
random double values between -5 and 5, calls selectionSort with ia, and then
prints the values of ia.

Figure 12-24. The main method in NumberSelectionSort

A selection sort works essentially as follows: find the smallest value in the list
and swap it with the first item in the list; find the next smallest item in the list
and swap it with the second item in the list; continue until the list is sorted.

The selectionSort method (Figure 12-25) has a single parameter list of type
double array which is sorted in ascending order using two nested for loops. In
the outer loop, index, which ranges from 0 to list.length-1, is the location in list
where we want to place the smallest element found each time the inner loop
completes. In the inner loop, scan ranges from index+1 to list.length and an if
statement checks for a smaller element on each iteration, and when found,
records its location in min. After the inner loop completes, the element at min
will be the smallest element in the range of the inner loop. The element at min is
swapped with the element at index. Then index is incremented in the outer loop

Using the Viewer Canvas (2.0.0) 6/26/2014

12-24

and the inner loop finds the next smallest value in list. As the program
continues, all of the elements to the left to index will have been sorted. The
outer loop completes when index reaches the end of it range. At this time, list is
sorted and the method ends.

Figure 12-25. The selectionSort method in NumberSelectionSort

12.5.2 Running the NumberSelectionSort in the Canvas

Let’s compile the program by clicking the green plus . Now click the Run in
Viewer Canvas button and then click the Play button to start the program
visualization.

Notice that the canvas has two viewers for ia, the double array created and
initialized in main. The first viewer for ia is set to the Bar Graph viewer.
Viewing the values in a bar graph enhances the visualization by making it easier
to see the values as they are swapped during the sort. The second viewer for ia
is set to the Presentation - Structure Identifier viewer which is the default
viewer for arrays and structures such as linked lists and trees. Notice that this
viewer has been configured to associate the variables index, min, and scan with
the array’s index values. Recall that this was done for low, mid, and high in the
BinarySearchExample by clicking the Menu button in the upper right corner
of the viewer, selecting the Add Index Expressions option, then entering the
expressions in the dialog (see Figure 12-16).

Using the Viewer Canvas (2.0.0) 6/26/2014

12-25

Figure 12-26 shows the canvas for NumericSelectionSortExample during the
first iteration of the inner loop. When you run the program, the array values will
be different from those shown in the figure since the values are randomly
generated.

Figure 12-26. The viewer canvas for NumberSelectionSort during the sort

As you play or step the canvas, you should see that when scan reaches the end
of the array, the element at location min is the smallest unsorted value. Then
you should see this element swapped with the element at index. As index moves
to the right, the elements in the array to the left of index should be sorted. When
index reaches the end of its range, ia is sorted and the method ends as shown in
Figure 12-27.

Now let’s explore several other aspects of running this program in the canvas.
Click the Run in Viewer Canvas button . Notice that before you click the Play
button or begin stepping in the program, the variable names and viewers are
grayed out in the canvas window. After you click the Play button , you
should see the variable names and viewers become active as they are created
and/or assigned during the stepping. Note that sometimes the viewer is active
but the variable name is grayed out. This means the variable is out of scope.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-26

When a variable is no longer in scope, the viewer displays its last known value.
In the case of a reference variable for an object (e.g., an array), the value may be
updated via another variable that references the object (i.e., an alias). For
example, the double array ia is declared in main and then passed to selectionSort
as the parameter list. Since ia and list refer to the same object, the viewer open
on ia is updated anytime list is updated. Hence, the viewer for the array is
updated and active even though its variable ia is grayed out as shown above in
Figure 12-26.

If a viewer never comes into scope directly or via an alias, it will remain grayed
out even though the program completes normally. For example, if you click the
Run in Viewer Canvas button and then click the Step button repeatedly
without stepping-in to the selectionSort method, you will see that the viewers for
index, min, scan, and temp remain grayed out since they never came into scope,
even though the array ia has been sorted.

Figure 12-27. The viewer canvas for NumberSelectionSort after the sort

Using the Viewer Canvas (2.0.0) 6/26/2014

12-27

12.6 Wrapping Up – Notes on Using the Canvas

Running in the Canvas – After a program has been compiled, run it in the
canvas as follows:

(1) On the desktop toolbar, click the Run in Canvas button . This
launches the program in the debugger and either opens a new canvas
window or one with a previously saved canvas file for the program.

(2) For a new canvas, Click the Step and/or Step-in on the canvas
window or debug tab until you see variables of interest in the Variables
tab. You may also set one or more breakpoints and click the
Resume button to run to a breakpoint and stop. Drag the variables
of interest onto the canvas to open the respective viewers, and then save
the canvas.

(3) Control the canvas with the Play button (auto step-in), Pause button
 and Stop button as well as the debug buttons. To regulate the

speed of the program, decrease or increase the delay between steps
using the Delay slider .

(4) Viewers on the canvas are updated automatically by stepping at the
statements that modify the variables, fields, and expressions
represented in viewers. Most viewers are state-based so updates only
occur when the debugger has just completed a step or when it is
stopped at a breakpoint. If you set a breakpoint and resume to it, the
debugger runs to the breakpoint and stops. Some viewers for variables
on the path to the breakpoint may not be updated, especially if the
variables are not in scope (grayed-out) at the breakpoint.

(5) Observe the behavior of the program, and re-run the program in the
canvas as appropriate to understand and/or debug the program.

Viewer Menu – With an active viewer selected on the canvas, click the Viewer
Menu button in the upper right corner of the viewer frame. All settings and
preferences below are saved with the canvas file.

(1) Viewers –selects among the available viewers for an active object.

(2) Edit Expression/Scope – allows you change the expression for the
viewer and if applicable, its class, method, and call depth as applicable.

(3) Viewer Settings – opens the viewer settings dialog.

(4) Invoke Method – opens the Invoke Method dialog for an object viewer.

(5) Viewer Info – displays a short description of the selected viewer.

(6) Transparent – toggles viewer borders off/on and makes the viewer
background transparent for some viewers.

(7) Scope Test – sets the scope to full, ignore depth (recursive), or none.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-28

(8) Move To Back – moves viewer to back or behind an overlapping
viewer.

(9) Auto Size – allows the viewer to resize automatically within limits. If
you manually resize a viewer, Auto Size is disabled until you reselect it.

(10) Remove – removes a viewer from the canvas.

Canvas File (. jgrasp_canvas.xml) – Naming Convention and Contents

(1) Naming convention – To associate the canvas file with a program, the
name must begin with the Java file name that contains main or with the
jGRASP project file name for the program. For example, program
MyProgram.java has canvas MyProgram.jgrasp_canvas.xml. If
MyProgram.java was in a jGRASP project MyProject.gpj, the canvas
file could be MyProject.jgrasp_canvas.xml. This naming convention
enables “Run in Canvas” to open the appropriate canvas file when
launching the program.

(2) XML File Contents – Each viewer on the canvas is saved in the
.jgrasp_canvas.xml file along with its settings and its scope and call
stack depth. This has important implications regarding program changes
after variables have been dragged on the canvas. For example, changing
the names of classes and methods may make the recorded scope
information incorrect and thus make the viewer unresponsive. See
canvas Edit menu below to make “global changes to the canvas.
Otherwise, if you have only a few variables you can remove the viewer
and then drag the variable onto the canvas again. The recorded scope
information also prevents you from simply renaming a canvas file after
renaming your program. If you rename your program, see the “Change
Class and Method Name option in the Edit menu below.

Canvas Edit Menu

(1) Add Text Box – allows you to add a text box to the canvas (e.g., as a
title or description of the canvas). The entered text may be plain text or
HTML.

(2) Add Expression Viewer – allows you to add a viewer and an
expression. Note that the expression will be evaluated at each step
whenever any involved variables/methods are in scope.

(3) Change Class or Method Names – allows you to make “global”
changes to the canvas for classes, method, and call depth. Set call depth
to zero to allow recursive scope within the method.

(4) Exclusions – allows you to indicate classes and/or methods to exclude
from “Play” and “Step In” when Auto Step is on.

For addition details click Help > Viewers and Canvas on the canvas menu.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-29

12.7 Looking Ahead to Data Structures – Exercises

The files for these exercises come with the jGRASP distribution and are found
in the Examples\Tutorials\ViewerExamples.

(1) Use the viewer canvas to experiment with the Java Collection classes.

a. Open CollectionsExample.java by double-clicking on the file in
the Browse tab.

b. On the desktop toolbar click the Run in canvas button. This
opens a new (empty) canvas window if no canvas file has been
previously created for the program.

c. Click the Step button on the canvas window or debug tab until
you see variables of interest in the Variables tab.

d. Drag one or more variables onto the canvas; a default viewer
should open for each variable. For example, drag the following
onto the canvas.

i. stringList for an array of Strings

ii. myArrayList

e. Save the canvas.

f. On the canvas, click the Play button (auto step-in) to start the

visualization. Use the Pause button and Stop button as
needed. You can regulate the speed with the "Delay" slider.

g. Since the CollectionsExample has an infinite loop, you will need to

click the Stop button on the canvas or the End button on the
Run I/O tab to end the program.

h. On the toolbar click the Run in canvas button. The canvas you
created above should open, and the program should be stopped at
the first executable statement. You are now ready to Play , Step

, Step-in , set breakpoints , Resume , etc.

i. Now let’s open a second canvas:

i. Set a breakpoint in the program, and run the debugger
.

Using the Viewer Canvas (2.0.0) 6/26/2014

12-30

ii. After the program stops the breakpoint, open a canvas by
clicking the Open Canvas button on the Debug
toolbar.

iii. Click the Step button on the canvas window or debug
tab until you see variables of interest in the Variables tab.

iv. Drag one or more variables onto the canvas; a default
viewer should open for each variable. For example, drag
one of the following onto the canvas.

1. myLinkedList

2. myTreeMap

3. myHashMap

v. Play , Step , Step-in , set breakpoints ,

Resume , etc.

In the exercises below, a canvas file has already been created for each of the
example programs indicated below. See the notes on the last page for details on
using the Viewer menu.

(2) BinaryTreeExample – In the Browse tab, double-click on the file to open it.
On the desktop toolbar click the Run in canvas button. On the canvas,
click the Play button.

 For fun let’s try some Interactions with the running canvas.

a. Pause the Viewer Canvas, then click on BinaryTreeExample.main
in the call stack pane of the Debug tab. This is to ensure that bt is
in scope.

b. Click on the Interaction tab (lower part of desktop). As the
statements below are entered in the Interactions tab, you should see
the elements (in the viewer on the canvas) added to bt and then
removed as the methods are invoked.

 bt.add(455);
 bt.add(350);
 bt.remove(455);

Using the Viewer Canvas (2.0.0) 6/26/2014

12-31

(3) QueueExample – In the Browse tab, double-click on the file to open it. On
the desktop toolbar click the Run in canvas button. On the canvas, click
the Play button.

(4) LinkedListExample – In the Browse tab, double-click on the file to open it.
On the desktop toolbar click the Run in canvas button. On the canvas,
click the Play button.

(5) DoublyLinkedListExample – In the Browse tab, double-click on the file to
open it. On the desktop toolbar click the Run in canvas button. On the
canvas, click the Play button.

(6) ScannerExample – In the Browse tab, double-click on the file to open it.
On the desktop toolbar click the Run in canvas button. On the canvas,
click the Play button.

	12 Using the Viewer Canvas
	12.1 Introduction
	12.2 Creating a Simple Canvas – AcmeDinnerTheater Program
	12.2.1 Running in a New Canvas and Adding Variables
	12.2.2 Running in a Saved Canvas

	12.3 Viewing an Array on the Canvas – BinarySearchExample
	12.3.1 Understanding the BinarySearch method
	12.3.2 Compiling and Running the BinarySearchExample
	12.3.3 Controlling the Viewer Canvas

	12.4 Creating a Canvas with Array Viewer – BinarySearchExample
	12.4.1 Opening a Second Canvas Window
	12.4.2 Saving the Canvas File
	12.4.3 Adding Variables to the New Canvas
	12.4.4 Playing the New Canvas
	12.4.5 Adding Index Expressions to the Array Viewer
	12.4.6 Changing Rotation, Width, and Scale in the Presentation Viewers
	12.4.7 Experimenting with Different Array Viewers

	12.5 Sorting on the Canvas – NumberSelectionSort
	12.5.1 Reviewing the Source Code
	12.5.2 Running the NumberSelectionSort in the Canvas

	12.6 Wrapping Up – Notes on Using the Canvas
	12.7 Looking Ahead to Data Structures – Exercises

